A simple parameter, called the Aneurysm number (An) which is defined as the ratio of transport to vortex time scales, has been shown to classify the flow mode in simplified aneurysm geometries. Our objective is to test the hypothesis that An can classify the flow in patient-specific intracranial aneurysms (IA). Therefore, the definition of this parameter is extended to anatomic geometries by using hydraulic diameter and the length of expansion area in the approximate direction of the flow. The hypothesis is tested using image-based flow simulations in five sidewall and four bifurcation geometries, i.e., if An ≲ 1 (shorter transport time scale), then the fluid is transported across the neck before the vortex could be formed, creating a quasi-stationary shear layer (cavity mode). By contrast, if An ≳ 1 (shorter vortex time scale), a vortex is formed. The results show that if An switches from An ≲ 1 to An ≳ 1, then the flow mode switches from the cavity mode to the vortex mode. However, if An does not switch, then the IAs stay in the same mode. It is also shown that IAs in the cavity mode have significantly lower An, temporal fluctuations of wall shear stress and oscillatory shear index (OSI) compared to the vortex mode (p < 0.01). In addition, OSI correlates with An in each flow mode and with pulsatility index in each IA. This suggests An to be a viable hemodynamic parameter which can be easily calculated without the need for detailed flow measurements/ simulations.

1.
J. C.
Lasheras
, “
The biomechanics of arterial aneurysms
,”
Annu. Rev. Fluid Mech.
39
,
293
319
(
2007
).
2.
D. M.
Sforza
,
C. M.
Putman
, and
J. R.
Cebral
, “
Hemodynamics of cerebral aneurysms
,”
Annu. Rev. Fluid Mech.
41
,
91
107
(
2009
).
3.
J. R.
Cebral
,
F.
Mut
,
J.
Weir
, and
C.
Putman
, “
Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms
,”
Am. J. Neuroradiol.
32
,
145
151
(
2011
).
4.
J.
Xiang
,
S. K.
Natarajan
,
M.
Tremmel
,
D.
Ma
,
J.
Mocco
,
L. N.
Hopkins
,
A. H.
Siddiqui
,
E. I.
Levy
, and
H.
Meng
, “
Hemodynamic–morphologic discriminants for intracranial aneurysm rupture
,”
Stroke
42
,
144
152
(
2011
).
5.
H.
Meng
,
V.
Tutino
,
J.
Xiang
, and
A.
Siddiqui
, “
High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis
,”
Am. J. Neuroradiol.
35
,
1254
1262
(
2014
).
6.
L.
Boussel
,
V.
Rayz
,
C.
McCulloch
,
A.
Martin
,
G.
Acevedo-Bolton
,
M.
Lawton
,
R.
Higashida
,
W. S.
Smith
,
W. L.
Young
, and
D.
Saloner
, “
Aneurysm growth occurs at region of low wall shear stress
,”
Stroke
39
,
2997
3002
(
2008
).
7.
H.
Meng
,
Z.
Wang
,
Y.
Hoi
,
L.
Gao
,
E.
Metaxa
,
D. D.
Swartz
, and
J.
Kolega
, “
Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation
,”
Stroke
38
,
1924
1931
(
2007
).
8.
M.
Shojima
,
M.
Oshima
,
K.
Takagi
,
R.
Torii
,
M.
Hayakawa
,
K.
Katada
,
A.
Morita
, and
T.
Kirino
, “
Magnitude and role of wall shear stress on cerebral aneurysm
,”
Stroke
35
,
2500
2505
(
2004
).
9.
H.
Nakatani
,
N.
Hashimoto
,
Y.
Kang
,
N.
Yamazoe
,
H.
Kikuchi
,
S.
Yamaguchi
, and
H.
Niimi
, “
Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats
,”
J. Neurosurg.
74
,
258
262
(
1991
).
10.
J. M.
Dolan
,
H.
Meng
,
F. J.
Sim
, and
J.
Kolega
, “
Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress
,”
Am. J. Physiol. Cell Physiol.
305
,
C854
C866
(
2013
).
11.
M. O.
Khan
,
C.
Chnafa
,
D.
Gallo
,
F.
Molinari
,
U.
Morbiducci
,
D. A.
Steinman
, and
K.
Valen-Sendstad
, “
On the quantification and visualization of transient periodic instabilities in pulsatile flows
,”
J. Biomech.
52
,
179
182
(
2017
).
12.
K.
Valen-Sendstad
,
M.
Piccinelli
, and
D. A.
Steinman
, “
High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: Implications for aneurysm initiation and rupture?
,”
J. Biomech.
47
,
3210
3216
(
2014
).
13.
G.
Byrne
,
F.
Mut
, and
J.
Cebral
, “
Quantifying the large-scale hemodynamics of intracranial aneurysms
,”
Am. J. Neuroradiol.
35
,
333
338
(
2014
).
14.
N.
Varble
,
G.
Trylesinski
,
J.
Xiang
,
K.
Snyder
, and
H.
Meng
, “
Identification of vortex structures in a cohort of 204 intracranial aneurysms
,”
J. R. Soc., Interface
14
,
20170021
(
2017
).
15.
T. B.
Le
,
I.
Borazjani
, and
F.
Sotiropoulos
, “
Pulsatile flow effects on the hemodynamics of intracranial aneurysms
,”
J. Biomech. Eng.
132
,
111009
(
2010
).
16.
M.
Gharib
,
E.
Rambod
, and
K.
Shariff
, “
A universal time scale for vortex ring formation
,”
J. Fluid Mech.
360
,
121
140
(
1998
).
17.
R.
Gosling
and
D.
King
, “
Arterial assessment by Doppler-shift ultrasound
,”
Proc. R. Soc. Med.
67
,
447
449
(
1974
).
18.
H.
Asgharzadeh
and
I.
Borazjani
, “
A non-dimensional parameter for classification of the flow in intracranial aneurysms. I. Simplified geometries
,”
Phys. Fluids
31
,
031904
(
2018
).
19.
C.
Poelma
,
P. N.
Watton
, and
Y.
Ventikos
, “
Transitional flow in aneurysms and the computation of haemodynamic parameters
,”
J. R. Soc., Interface
12
,
20141394
(
2015
).
20.
T. A.
Hope
,
M. D.
Hope
,
D. D.
Purcell
,
C.
von Morze
,
D. B.
Vigneron
,
M. T.
Alley
, and
W. P.
Dillon
, “
Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow
,”
Magn. Reson. Imaging
28
,
41
46
(
2010
).
21.
A.-V.
Salsac
,
S.
Sparks
,
J.-M.
Chomaz
, and
J.
Lasheras
, “
Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms
,”
J. Fluid Mech.
560
,
19
51
(
2006
).
22.
G. J.
Sheard
, “
Flow dynamics and wall shear-stress variation in a fusiform aneurysm
,”
J. Eng. Math.
64
,
379
390
(
2009
).
23.
H.
Asgharzadeh
and
I.
Borazjani
, “
Effects of Reynolds and womersley numbers on the hemodynamics of intracranial aneurysms
,”
Comput. Math. Methods Med.
2016
,
7412926
.
24.
T. B.
Le
,
D. R.
Troolin
,
D.
Amatya
,
E. K.
Longmire
, and
F.
Sotiropoulos
, “
Vortex phenomena in sidewall aneurysm hemodynamics: Experiment and numerical simulation
,”
Ann. Biomed. Eng.
41
,
2157
2170
(
2013
).
25.
I.
Jansen
,
J.
Schneiders
,
W.
Potters
,
P.
van Ooij
,
R.
van den Berg
,
E.
van Bavel
,
H.
Marquering
, and
C.
Majoie
, “
Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics
,”
Am. J. Neuroradiol.
35
,
1543
1548
(
2014
).
26.
J.
Xiang
,
A.
Siddiqui
, and
H.
Meng
, “
The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms
,”
J. Biomech.
47
,
3882
3890
(
2014
).
27.
P.
Nair
,
B. W.
Chong
,
A.
Indahlastari
,
J.
Lindsay
,
D.
DeJeu
,
V.
Parthasarathy
,
J.
Ryan
,
H.
Babiker
,
C.
Workman
,
L. F.
Gonzalez
 et al, “
Hemodynamic characterization of geometric cerebral aneurysm templates
,”
J. Biomech.
49
,
2118
2126
(
2016
).
28.
J.
Schneiders
,
H.
Marquering
,
L.
Antiga
,
R.
Van den Berg
,
E.
VanBavel
, and
C.
Majoie
, “
Intracranial aneurysm neck size overestimation with 3D rotational angiography: The impact on intra-aneurysmal hemodynamics simulated with computational fluid dynamics
,”
Am. J. Neuroradiol.
34
,
121
128
(
2013
).
29.
H.
Baek
,
M.
Jayaraman
,
P.
Richardson
, and
G.
Karniadakis
, “
Flow instability and wall shear stress variation in intracranial aneurysms
,”
J. R. Soc., Interface
7
,
967
988
(
2009
).
30.
S.
Dhar
,
M.
Tremmel
,
J.
Mocco
,
M.
Kim
,
J.
Yamamoto
,
A. H.
Siddiqui
,
L. N.
Hopkins
, and
H.
Meng
, “
Morphology parameters for intracranial aneurysm rupture risk assessment
,”
Neurosurgery
63
,
185
197
(
2008
).
31.
L.
Ge
and
F.
Sotiropoulos
, “
A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries
,”
J. Comput. Phys.
225
,
1782
1809
(
2007
).
32.
I.
Borazjani
,
L.
Ge
, and
F.
Sotiropoulos
, “
Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
,”
J. Comput. Phys.
227
,
7587
7620
(
2008
).
33.
I.
Borazjani
,
L.
Ge
,
T.
Le
, and
F.
Sotiropoulos
, “
A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows
,”
Comput. Fluids
77
,
76
96
(
2013
).
34.
H.
Asgharzadeh
and
I.
Borazjani
, “
A Newton–Krylov method with an approximate analytical jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries
,”
J. Comput. Phys.
331
,
227
256
(
2016
).
35.
A.
Gilmanov
and
F.
Sotiropoulos
, “
A hybrid cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies
,”
J. Comput. Phys.
207
,
457
492
(
2005
).
36.
I.
Borazjani
and
F.
Sotiropoulos
, “
Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes
,”
J. Exp. Biol.
211
,
1541
1558
(
2008
).
37.
I.
Borazjani
and
F.
Sotiropoulos
, “
Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region
,”
J. Fluid Mech.
621
,
321
364
(
2009
).
38.
I.
Borazjani
, “
Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves
,”
Comput. Methods Appl. Mech. Eng.
257
,
103
116
(
2013
).
39.
I.
Borazjani
, “
A review of fluid-structure interaction simulations of prosthetic heart valves
,”
J. Long-Term Eff. Med. Implants
25
,
75
93
(
2015
).
40.
M.
Hedayat
and
I.
Borazjani
, “
Comparison of platelet activation through hinge vs bulk flow in bileaflet mechanical heart valves
,”
J. Biomech.
83
,
280
290
(
2019
).
41.
I.
Borazjani
,
J.
Westerdale
,
E.
McMahon
,
P. K.
Rajaraman
,
J.
Heys
, and
M.
Belohlavek
, “
Left ventricular flow analysis: Recent advances in numerical methods and applications in cardiac ultrasound
,”
Comput. Math. Methods Med.
2013
,
395081
.
42.
R.
Bottom
 II
,
I.
Borazjani
,
E.
Blevins
, and
G.
Lauder
, “
Hydrodynamics of swimming in stingrays: Numerical simulations and the role of the leading-edge vortex
,”
J. Fluid Mech.
788
,
407
443
(
2016
).
43.
M.
Daghooghi
and
I.
Borazjani
, “
The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids
,”
J. Fluid Mech.
781
,
506
549
(
2015
).
44.
C.
Rindt
,
A.
Van Steenhoven
,
J.
Janssen
, and
G.
Vossers
, “
Unsteady entrance flow in a 90 curved tube
,”
J. Fluid Mech.
226
,
445
474
(
1991
).
45.
D.
Webster
and
E.
Longmire
, “
Vortex rings from cylinders with inclined exits
,”
Phys. Fluids
10
,
400
416
(
1998
).
46.
H.
Asadi
,
H.
Asgharzadeh
, and
I.
Borazjani
, “
On the scaling of propagation of periodically generated vortex rings
,”
J. Fluid Mech.
853
,
150
170
(
2018
).
47.
J. R.
Cebral
,
M. A.
Castro
,
S.
Appanaboyina
,
C. M.
Putman
,
D.
Millan
, and
A. F.
Frangi
, “
Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity
,”
IEEE Trans. Med. Imaging
24
,
457
467
(
2005
).
48.
K.
Perktold
and
G.
Rappitsch
, “
Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
,”
J. Biomech.
28
,
845
856
(
1995
).
49.
D. N.
Ku
, “
Blood flow in arteries
,”
Annu. Rev. Fluid Mech.
29
,
399
434
(
1997
).
50.
K. Y.
Lee
,
Y. H.
Sohn
,
J. S.
Baik
,
G. W.
Kim
, and
J.-S.
Kim
, “
Arterial pulsatility as an index of cerebral microangiopathy in diabetes
,”
Stroke
31
,
1111
1115
(
2000
).
51.
T. O.
Gabrielsen
and
T.
Greitz
, “
Normal size of the internal carotid, middle cerebral and anterior cerebral arteries
,”
Acta Radiol.: Diagn.
10
,
1
10
(
1970
).
52.
E.
Finol
,
K.
Keyhani
, and
C.
Amon
, “
The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions
,”
J. Biomech. Eng.
125
,
207
217
(
2003
).
53.
S.
Yu
, “
Steady and pulsatile flow studies in abdominal aortic aneurysm models using particle image velocimetry
,”
Int. J. Heat Fluid Flow
21
,
74
83
(
2000
).
54.
S. S.
Gopalakrishnan
,
B.
Pier
, and
A.
Biesheuvel
, “
Dynamics of pulsatile flow through model abdominal aortic aneurysms
,”
J. Fluid Mech.
758
,
150
179
(
2014
).
55.
G.
Mari
,
K. J.
Moise
, Jr.
,
R. L.
Deter
,
R. J.
Carpenter
, Jr.
, and
N.
Wasserstrum
, “
Fetal heart rate influence on the pulsatility index in the middle cerebral artery
,”
J. Clin. Ultrasound
19
,
149
153
(
1991
).
56.
S.
Oka
and
M.
Nakai
, “
Optimality principle in vascular bifurcation
.”
Biorheology
24
,
737
751
(
1986
).
57.
N. M.
Naughton
,
B. D.
Plourde
,
J. R.
Stark
,
S.
Hodis
, and
J. P.
Abraham
, “
Impacts of waveforms on the fluid flow, wall shear stress, and flow distribution in cerebral aneurysms and the development of a universal reduced pressure
,”
J. Biomed. Sci. Eng.
7
,
41615
(
2014
).
58.
C. B.
da Silva
,
R. J.
Dos Reis
, and
J. C.
Pereira
, “
The intense vorticity structures near the turbulent/non-turbulent interface in a jet
,”
J. Fluid Mech.
685
,
165
190
(
2011
).
59.
R.
Jahanbakhshi
,
N. S.
Vaghefi
, and
C. K.
Madnia
, “
Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer
,”
Phys. Fluids
27
,
105105
(
2015
).
60.
J. M.
Burgers
, “
A mathematical model illustrating the theory of turbulence
,”
Adv. Appl. Mech.
1
,
171
199
(
1948
).
61.
T. D.
Mast
and
A. D.
Pierce
, “
A theory of aneurysm sounds
,”
J. Biomech.
28
,
1045
1053
(
1995
).
62.
O.
Reynolds
, “
On the dynamical theory of incompressible viscous fluids and the determination of the criterion
.”
Proc. R. Soc. London
56
,
40
45
(
1894
).
63.
J. R.
Cebral
,
M. A.
Castro
,
J. E.
Burgess
,
R. S.
Pergolizzi
,
M. J.
Sheridan
, and
C. M.
Putman
, “
Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models
,”
Am. J. Neuroradiol.
26
,
2550
2559
(
2005
).
64.
L.-D.
Jou
,
D.
Lee
,
H.
Morsi
, and
M.
Mawad
, “
Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery
,”
Am. J. Neuroradiol.
29
,
1761
1767
(
2008
).
65.
Y.
Shimogonya
,
T.
Ishikawa
,
Y.
Imai
,
N.
Matsuki
, and
T.
Yamaguchi
, “
Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (gon)
,”
J. Biomech.
42
,
550
554
(
2009
).
66.
A.
Geers
,
I.
Larrabide
,
H.
Morales
, and
A.
Frangi
, “
Approximating hemodynamics of cerebral aneurysms with steady flow simulations
,”
J. Biomech.
47
,
178
185
(
2014
).
67.
A.
Marzo
,
P.
Singh
,
I.
Larrabide
,
A.
Radaelli
,
S.
Coley
,
M.
Gwilliam
,
I. D.
Wilkinson
,
P.
Lawford
,
P.
Reymond
,
U.
Patel
 et al, “
Computational hemodynamics in cerebral aneurysms: The effects of modeled versus measured boundary conditions
,”
Ann. Biomed. Eng.
39
,
884
896
(
2011
).
68.
Y.
Miura
,
F.
Ishida
,
Y.
Umeda
,
H.
Tanemura
,
H.
Suzuki
,
S.
Matsushima
,
S.
Shimosaka
, and
W.
Taki
, “
Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms
,”
Stroke
44
,
519
521
(
2013
).
69.
M. A.
Castro
,
C. M.
Putman
,
M.
Sheridan
, and
J.
Cebral
, “
Hemodynamic patterns of anterior communicating artery aneurysms: A possible association with rupture
,”
Am. J. Neuroradiol.
30
,
297
302
(
2009
).
70.
D. N.
Ku
,
D. P.
Giddens
,
C. K.
Zarins
, and
S.
Glagov
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress
,”
Arterioscler., Thromb., Vasc. Biol.
5
,
293
302
(
1985
).
71.
P. F.
Davies
, “
Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology
,”
Nat. Clin. Pract. Cardiovasc. Med.
6
,
16
26
(
2009
).
72.
V.
Peiffer
,
S. J.
Sherwin
, and
P. D.
Weinberg
, “
Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review
,”
Cardiovasc. Res.
99
,
242
250
(
2013
).
73.
N.
Varble
,
V. M.
Tutino
,
J.
Yu
,
A.
Sonig
,
A. H.
Siddiqui
,
J. M.
Davies
, and
H.
Meng
, “
Shared and distinct rupture discriminants of small and large intracranial aneurysms
,”
Stroke
49
,
856
864
(
2018
).
You do not currently have access to this content.