Non-dimensional parameters are routinely used to classify different flow regimes. We propose a non-dimensional parameter, called Aneurysm number (An), which depends on both geometric and flow characteristics, to classify the flow inside aneurysm-like geometries (sidewalls and bifurcations). The flow inside aneurysm-like geometries can be widely classified into (i) the vortex mode in which a vortex ring is formed and (ii) the cavity mode in which a stationary shear layer acts similar to a moving lid of a lid-driven cavity. In these modes, two competing time scales exist: (a) a transport time scale, Tt, which is the time scale to develop a shear layer by transporting a fluid particle across the expansion region, and (b) the vortex formation time scale, Tv. Consequently, a relevant non-dimensional parameter is the ratio of these two time scales, which is called Aneurysm number: An = Tt/Tv. It is hypothesized, based on this definition, that the flow is in the vortex mode if the time required for vortex ring formation Tv is less than the transport time Tt (An ≳ 1). Otherwise, the flow is in the cavity mode (An ≲ 1). This hypothesis is systematically tested through numerical simulations on simplified geometries and shown to be true through flow visualizations and identification of the main vortex and shear layer. The main vortex is shown to evolve when An ≳ 1 but stationary when An ≲ 1. In fact, it is shown that the flows with An ≲ 1 (cavity mode) are characterized by much smaller fluctuations of wall shear stress and oscillatory shear index relative to flows with An ≳ 1 (vortex mode) because of their quasi-stationary flow pattern (cavity mode) compared to the evolution and breakdown of the formed vortex ring (vortex mode).

1.
O.
Reynolds
, “
On the dynamical theory of incompressible viscous fluids and the determination of the criterion
,”
Proc. R. Soc. London
56
,
40
45
(
1894
).
2.
J. R.
Cebral
,
M. A.
Castro
,
J. E.
Burgess
,
R. S.
Pergolizzi
,
M. J.
Sheridan
, and
C. M.
Putman
, “
Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models
,”
Am. J. Neuroradiol.
26
,
2550
2559
(
2005
).
3.
M. A.
Castro
,
C. M.
Putman
,
M.
Sheridan
, and
J.
Cebral
, “
Hemodynamic patterns of anterior communicating artery aneurysms: A possible association with rupture
,”
Am. J. Neuroradiol.
30
,
297
302
(
2009
).
4.
T. B.
Le
,
I.
Borazjani
, and
F.
Sotiropoulos
, “
Pulsatile flow effects on the hemodynamics of intracranial aneurysms
,”
J. Biomech. Eng.
132
,
111009
(
2010
).
5.
T. A.
Hope
,
M. D.
Hope
,
D. D.
Purcell
,
C.
von Morze
,
D. B.
Vigneron
,
M. T.
Alley
, and
W. P.
Dillon
, “
Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow
,”
Magn. Reson. Imaging
28
,
41
46
(
2010
).
6.
G. J.
Sheard
, “
Flow dynamics and wall shear-stress variation in a fusiform aneurysm
,”
J. Eng. Math.
64
,
379
390
(
2009
).
7.
H.
Asgharzadeh
and
I.
Borazjani
, “
Effects of Reynolds and Womersley numbers on the hemodynamics of intracranial aneurysms
,”
Comput. Math. Methods Med.
2016
,
7412926
.
8.
T. B.
Le
,
D. R.
Troolin
,
D.
Amatya
,
E. K.
Longmire
, and
F.
Sotiropoulos
, “
Vortex phenomena in sidewall aneurysm hemodynamics: Experiment and numerical simulation
,”
Ann. Biomed. Eng.
41
,
2157
2170
(
2013
).
9.
R.
Gosling
and
D.
King
, “
Arterial assessment by Doppler-shift ultrasound
,”
Proc. R. Soc. Med.
67
,
447
449
(
1974
).
10.
S.
Yu
, “
Steady and pulsatile flow studies in abdominal aortic aneurysm models using particle image velocimetry
,”
Int. J. Heat Fluid Flow
21
,
74
83
(
2000
).
11.
S. S.
Gopalakrishnan
,
B.
Pier
, and
A.
Biesheuvel
, “
Dynamics of pulsatile flow through model abdominal aortic aneurysms
,”
J. Fluid Mech.
758
,
150
179
(
2014
).
12.
E.
Finol
,
K.
Keyhani
, and
C.
Amon
, “
The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions
,”
J. Biomech. Eng.
125
,
207
217
(
2003
).
13.
M.
Gharib
,
E.
Rambod
, and
K.
Shariff
, “
A universal time scale for vortex ring formation
,”
J. Fluid Mech.
360
,
121
140
(
1998
).
14.
J. C.
Lasheras
, “
The biomechanics of arterial aneurysms
,”
Annu. Rev. Fluid. Mech.
39
,
293
319
(
2007
).
15.
L.
Ge
and
F.
Sotiropoulos
, “
A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries
,”
J. Comput. Phys.
225
,
1782
1809
(
2007
).
16.
H.
Asgharzadeh
and
I.
Borazjani
, “
A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries
,”
J. Comput. Phys.
331
,
227
256
(
2017
).
17.
A.
Gilmanov
and
F.
Sotiropoulos
, “
A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies
,”
J. Comput. Phys.
207
,
457
492
(
2005
).
18.
I.
Borazjani
,
L.
Ge
, and
F.
Sotiropoulos
, “
Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
,”
J. Comput. Phys.
227
,
7587
7620
(
2008
).
19.
I.
Borazjani
and
F.
Sotiropoulos
, “
Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes
,”
J. Exp. Biol.
211
,
1541
1558
(
2008
).
20.
I.
Borazjani
,
L.
Ge
,
T.
Le
, and
F.
Sotiropoulos
, “
A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows
,”
Comput. Fluids
77
,
76
96
(
2013
).
21.
I.
Borazjani
and
F.
Sotiropoulos
, “
Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region
,”
J. Fluid Mech.
621
,
321
364
(
2009
).
22.
I.
Borazjani
,
L.
Ge
, and
F.
Sotiropoulos
, “
High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta
,”
Ann. Biomed. Eng.
38
,
326
344
(
2010
).
23.
I.
Borazjani
, “
Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves
,”
Comput. Methods Appl. Mech. Eng.
257
,
103
116
(
2013
).
24.
I.
Borazjani
and
F.
Sotiropoulos
, “
The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta
,”
J. Biomech. Eng.
132
,
111005
(
2010
).
25.
H.
Asgharzadeh
,
I.
Borazjani
,
J.
Xiang
, and
H.
Meng
, “
Vortex generation in two intracranial aneurysms
,” in
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(
American Society of Mechanical Engineers
,
2014
), p.
V003T12A010
.
26.
M.
Hedayat
,
H.
Asgharzadeh
, and
I.
Borazjani
, “
Platelet activation of mechanical versus bioprosthetic heart valves during systole
,”
J. Biomech.
56
,
111
116
(
2017
).
27.
I.
Borazjani
and
F.
Sotiropoulos
, “
On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming
,”
J. Exp. Biol.
213
,
89
107
(
2010
).
28.
I.
Borazjani
, “
Simulations of unsteady aquatic locomotion: From unsteadiness in straight-line swimming to fast-starts
,”
Integr. Comp. Biol.
55
,
740
752
(
2015
).
29.
M.
Daghooghi
and
I.
Borazjani
, “
Self-propelled swimming simulations of bio-inspired smart structures
,”
Bioinspiration Biomimetics
11
,
056001
(
2016
).
30.
M.
Daghooghi
and
I.
Borazjani
, “
The hydrodynamic advantages of synchronized swimming in a rectangular pattern
,”
Bioinspiration Biomimetics
10
,
056018
(
2015
).
31.
I.
Borazjani
, “
The functional role of caudal and anal/dorsal fins during the c-start of a bluegill sunfish
,”
J. Exp. Biol.
216
,
1658
1669
(
2013
).
32.
R.
Bottom
 II
,
I.
Borazjani
,
E.
Blevins
, and
G.
Lauder
, “
Hydrodynamics of swimming in stingrays: Numerical simulations and the role of the leading-edge vortex
,”
J. Fluid Mech.
788
,
407
443
(
2016
).
33.
M.
Daghooghi
and
I.
Borazjani
, “
The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids
,”
J. Fluid Mech.
781
,
506
549
(
2015
).
34.
M.
Daghooghi
and
I.
Borazjani
, “
The effects of irregular shape on the particle stress of dilute suspensions
,”
J. Fluid Mech.
839
,
663
692
(
2018
).
35.
J.
Xiang
,
S. K.
Natarajan
,
M.
Tremmel
,
D.
Ma
,
J.
Mocco
,
L. N.
Hopkins
,
A. H.
Siddiqui
,
E. I.
Levy
, and
H.
Meng
, “
Hemodynamic–morphologic discriminants for intracranial aneurysm rupture
,”
Stroke
42
,
144
152
(
2011
).
36.
M. L.
Raghavan
,
B.
Ma
, and
R. E.
Harbaugh
, “
Quantified aneurysm shape and rupture risk
,”
J. Neurosurg.
102
,
355
362
(
2005
).
37.
A.
Marzo
,
P.
Singh
,
P.
Reymond
,
N.
Stergiopulos
,
U.
Patel
, and
R.
Hose
, “
Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
12
,
431
444
(
2009
).
38.
J.
Xiang
,
A.
Siddiqui
, and
H.
Meng
, “
The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms
,”
J. Biomech.
47
,
3882
3890
(
2014
).
39.
N. M.
Naughton
,
B. D.
Plourde
,
J. R.
Stark
,
S.
Hodis
, and
J. P.
Abraham
, “
Impacts of waveforms on the fluid flow, wall shear stress, and flow distribution in cerebral aneurysms and the development of a universal reduced pressure
,”
J. Biomed. Sci. Eng.
7
,
41615
(
2014
).
40.
K. Y.
Lee
,
Y. H.
Sohn
,
J. S.
Baik
,
G. W.
Kim
, and
J.-S.
Kim
, “
Arterial pulsatility as an index of cerebral microangiopathy in diabetes
,”
Stroke
31
,
1111
1115
(
2000
).
41.
J.
Hunt
,
A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,” Center for turbulence research Report No. CTR-S88,
1988
, pp.
193
208
.
42.
D.
Webster
and
E.
Longmire
, “
Vortex dynamics in jets from inclined nozzles
,”
Phys. Fluids
9
,
655
666
(
1997
).
43.
D.
Vigolo
,
S.
Radl
, and
H. A.
Stone
, “
Unexpected trapping of particles at a T junction
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
4770
4775
(
2014
).
44.
K. K.
Chen
,
C. W.
Rowley
, and
H. A.
Stone
, “
Vortex dynamics in a pipe t-junction: Recirculation and sensitivity
,”
Phys. Fluids
27
,
034107
(
2015
).
45.
J. V.
Soulis
,
O. P.
Lampri
,
D. K.
Fytanidis
, and
G. D.
Giannoglou
, “
Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta
,” in
Biomedical Engineering, 2011 10th International Workshop on IEEE
(
IEEE
,
2011
), pp.
1
4
.
46.
T.
Hashimoto
,
H.
Meng
, and
W. L.
Young
, “
Intracranial aneurysms: Links among inflammation, hemodynamics and vascular remodeling
,”
Neurol. Res.
28
,
372
380
(
2006
).
47.
H.
Meng
,
V.
Tutino
,
J.
Xiang
, and
A.
Siddiqui
, “
High wss or low wss? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis
,”
Am. J. Neuroradiol.
35
,
1254
1262
(
2014
).
48.
L.-D.
Jou
,
D.
Lee
,
H.
Morsi
, and
M.
Mawad
, “
Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery
,”
Am. J. Neuroradiol.
29
,
1761
1767
(
2008
).
49.
T. B.
Le
,
I.
Borazjani
,
S.
Kang
, and
F.
Sotiropoulos
, “
On the structure of vortex rings from inclined nozzles
,”
J. Fluid Mech.
686
,
451
483
(
2011
).
50.
F.
Durst
,
A.
Melling
, and
J.
Whitelaw
, “
Low Reynolds number flow over a plane symmetric sudden expansion
,”
J. Fluid Mech.
64
,
111
128
(
1974
).
51.
F.
Battaglia
,
S. J.
Tavener
,
A. K.
Kulkarni
, and
C. L.
Merkle
, “
Bifurcation of low Reynolds number flows in symmetric channels
,”
AIAA J.
35
,
99
105
(
1997
).
52.
J. R.
Cebral
,
F.
Mut
,
J.
Weir
, and
C. M.
Putman
, “
Association of hemodynamic characteristics and cerebral aneurysm rupture
,”
Am. J. Neuroradiol.
32
,
264
270
(
2011
).
53.
V.
Rayz
,
L.
Boussel
,
L.
Ge
,
J.
Leach
,
A.
Martin
,
M.
Lawton
,
C.
McCulloch
, and
D.
Saloner
, “
Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms
,”
Ann. Biomed. Eng.
38
,
3058
3069
(
2010
).
54.
M.
Tremmel
,
J.
Xiang
,
S. K.
Natarajan
,
L. N.
Hopkins
,
A. H.
Siddiqui
,
E. I.
Levy
, and
H.
Meng
, “
Alteration of intraaneurysmal hemodynamics for flow diversion using enterprise and vision stents
,”
World Neurosurg.
74
,
306
315
(
2010
).
55.
C. B.
da Silva
,
R. J.
Dos Reis
, and
J. C.
Pereira
, “
The intense vorticity structures near the turbulent/non-turbulent interface in a jet
,”
J. Fluid Mech.
685
,
165
190
(
2011
).
56.
R.
Jahanbakhshi
,
N. S.
Vaghefi
, and
C. K.
Madnia
, “
Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer
,”
Phys. Fluids
27
,
105105
(
2015
).
57.
J. M.
Burgers
, “
A mathematical model illustrating the theory of turbulence
,”
Adv. Appl. Mech.
1
,
171
199
(
1948
).
58.
P.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
USA
,
2015
).
59.
R.
Jahanbakhshi
and
C. K.
Madnia
, “
Entrainment in a compressible turbulent shear layer
,”
J. Fluid Mech.
797
,
564
603
(
2016
).
You do not currently have access to this content.