The jet formation of gas inhomogeneities under the impact of a planar shock wave is an interesting phenomenon that is closely related to shock convergence. In this study, a series of heavy gas inhomogeneities with very simple geometries (square, rectangle, circle, and triangle) are numerically reproduced to trace the source of the jet formation. Special attention is given to the wave patterns that lead to the formation of specific jet forms. The shock-accelerated multicomponent flow is simulated by solving inviscid compressible Euler equations. An up-wind characteristic space-time conservation element and solution element scheme is adopted, and a five-equation model is used to treat the gas interface. The jet types that emerge in the experimental images are explained based on the numerical results, and a typical shock pattern that ensures the jet formation is uncovered. It is found that, physically, the jet is initiated by the impact of the internal Mach stem, and the jet growth is nourished by the high speed gas flow induced by this Mach stem. The width of the jet is determined by the height of the internal Mach stem. Geometrically, a focal wedge enveloped by slip lines emerges in the gas inhomogeneity, in which the gas is accelerated. It is found that the existence of the focal wedge and the coordinates of the wedge tip can be used as qualitative criteria to illustrate the mechanism of the jet formation. These criteria provide a more intuitive basis for understanding the direction, scale, and process of jet formation.

1.
N. J.
Zabusky
, “
Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments
,”
Annu. Rev. Fluid Mech.
31
(
1
),
495
536
(
1999
).
2.
D.
Ranjan
,
J.
Oakley
, and
R.
Bonazza
, “
Shock-bubble interactions
,”
Annu. Rev. Fluid Mech.
43
,
117
140
(
2011
).
3.
W.-G.
Zeng
,
J.-H.
Pan
,
Yu-T.
Sun
, and
Yu-X.
Ren
, “
Turbulent mixing and energy transfer of reshocked heavy gas curtain
,”
Phys. Fluids
30
,
064106
(
2018
).
4.
S. M.
Tobias
and
J. B.
Marston
, “
Direct statistical simulation of jets and vortices in 2D flows
,”
Phys. Fluids
29
,
111111
(
2017
).
5.
L.
Danaila
,
L.
Voivenel
, and
E.
Varea
, “
Self-similarity criteria in anisotropic flows with viscosity stratification
,”
Phys. Fluids
29
,
020716
(
2017
).
6.
R. A.
Antonia
,
L.
Djenidi
,
L.
Danaila
, and
S. L.
Tang
, “
Small scale turbulence and the finite Reynolds number effect
,”
Phys. Fluids
29
,
020715
(
2017
).
7.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
(
2
),
297
319
(
1960
).
8.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
(
5
),
101
104
(
1969
).
9.
M.
Brouillette
, “
The Richtmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
(
1
),
445
468
(
2002
).
10.
J.
Yang
,
T.
Kubota
, and
E. E.
Zukoski
, “
Applications of shock-induced mixing to supersonic combustion
,”
AIAA J.
31
(
5
),
854
862
(
1993
).
11.
J. D.
Lindl
,
R. L.
McCrory
, and
E. M.
Campbell
, “
Progress toward ignition and burn propagation in inertial confinement fusion
,”
Phys. Today
45
(
9
),
32
40
(
1992
).
12.
J.
Lindl
,
O.
Landen
,
J.
Edwards
,
E.
Moses
, and
NIC Team
, “
Review of the national ignition campaign 2009-2012
,”
Phys. Plasmas
21
(
2
),
020501
(
2014
).
13.
W. D.
Arnett
,
J. N.
Bahcall
,
R. P.
Kirshner
, and
S. E.
Woosley
, “
Supernova 1987a
,”
Annu. Rev. Astron. Astrophys.
27
(
1
),
629
700
(
1989
).
14.
D.
Arnett
, “
The role of mixing in astrophysics
,”
Astrophys. J., Suppl. Ser.
127
(
2
),
213
(
2000
).
15.
J. F.
Haas
and
B.
Sturtevant
, “
Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
,”
J. Fluid Mech.
181
,
41
76
(
1987
).
16.
J. J.
Quirk
and
S.
Karni
, “
On the dynamics of a shock–bubble interaction
,”
J. Fluid Mech.
318
,
129
163
(
1996
).
17.
M.
Latini
,
O.
Schilling
, and
W. S.
Don
, “
High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude growth model predictions
,”
Phys. Fluids
19
(
2
),
024104
(
2007
).
18.
S.
Kumar
,
G.
Orlicz
,
C.
Tomkins
,
C.
Goodenough
,
K.
Prestridge
,
P.
Vorobieff
, and
R.
Benjamin
, “
Stretching of material lines in shock-accelerated gaseous flows
,”
Phys. Fluids
17
(
8
),
082107
(
2005
).
19.
J. H.
Niederhaus
,
J. A.
Greenough
,
J. G.
Oakley
,
D.
Ranjan
,
M. H.
Anderson
, and
R.
Bonazza
, “
A computational parameter study for the three-dimensional shock–bubble interaction
,”
J. Fluid Mech.
594
,
85
124
(
2008
).
20.
O.
Schilling
,
M.
Latini
, and
W. S.
Don
, “
Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability
,”
Phys. Rev. E
76
(
2
),
026319
(
2007
).
21.
P. E.
Dimotakis
and
R.
Samtaney
, “
Planar shock cylindrical focusing by a perfect-gas lens
,”
Phys. Fluids
18
(
3
),
031705
(
2006
).
22.
N.
Haehn
,
D.
Ranjan
,
C.
Weber
,
J.
Oakley
,
D.
Rothamer
, and
R.
Bonazza
, “
Reacting shock bubble interaction
,”
Combust. Flame
159
(
3
),
1339
1350
(
2012
).
23.
F.
Diegelmann
,
V.
Tritschler
,
S.
Hickel
, and
N.
Adams
, “
On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction
,”
Combust. Flame
163
,
414
426
(
2016
).
24.
C.
Tomkins
,
S.
Kumar
,
G.
Orlicz
, and
K.
Prestridge
, “
An experimental investigation of mixing mechanisms in shock-accelerated flow
,”
J. Fluid Mech.
611
,
131
150
(
2008
).
25.
B. J.
Balakumar
,
G. C.
Orlicz
,
J. R.
Ristorcelli
,
S.
Balasubramanian
,
K. P.
Prestridge
, and
C. D.
Tomkins
, “
Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: Velocity and density statistics
,”
J. Fluid Mech.
696
,
67
93
(
2012
).
26.
S.
Balasubramanian
,
G. C.
Orlicz
,
K. P.
Prestridge
, and
B. J.
Balakumar
, “
Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock
,”
Phys. Fluids
24
(
3
),
034103
(
2012
).
27.
Z.
Zhai
,
M.
Wang
,
T.
Si
, and
X.
Luo
, “
On the interaction of a planar shock with a light polygonal interface
,”
J. Fluid Mech.
757
,
800
816
(
2014
).
28.
Z.
Zhai
,
T.
Si
,
L.
Zou
, and
X.
Luo
, “
Jet formation in shockheavy gas bubble interaction
,”
Acta Mech. Sin.
29
(
1
),
24
35
(
2013
).
29.
L.
Zou
,
Z.
Zhai
,
J.
Liu
,
Y.
Wang
, and
C.
Liu
, “
Energy convergence effect and jet phenomenon of shock-heavy spherical bubble interaction
,”
Sci. China Phys., Mech. Astron.
58
(
12
),
124703
(
2015
).
30.
P. Y.
Georgievskiy
,
V. A.
Levin
, and
O. G.
Sutyrin
, “
Interaction of a shock with elliptical gas bubbles
,”
Shock Waves
25
(
4
),
357
369
(
2015
).
31.
K. R.
Bates
,
N.
Nikiforakis
, and
D.
Holder
, “
Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6
,”
Phys. Fluids
19
(
3
),
036101
(
2007
).
32.
M.
Wang
,
T.
Si
, and
X.
Luo
, “
Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study
,”
Exp. Fluids
54
(
1
),
1427
(
2013
).
33.
X.
Luo
,
M.
Wang
,
T.
Si
, and
Z.
Zhai
, “
On the interaction of a planar shock with an SF6 polygon
,”
J. Fluid Mech.
773
,
366
394
(
2015
).
34.
H.
Shen
,
C. Y.
Wen
,
M.
Parsani
, and
C. W.
Shu
, “
Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids
,”
J. Comput. Phys.
330
,
668
692
(
2017
).
35.
S. C.
Chang
, “
The method of space-time conservation element and solution element: A new approach for solving the Navier-Stokes and Euler equations
,”
J. Comput. Phys.
119
(
2
),
295
324
(
1995
).
36.
S. C.
Chang
,
X. Y.
Wang
, and
C. Y.
Chow
, “
The space-time conservation element and solution element method: A new high-resolution and genuinely multidimensional paradigm for solving conservation laws
,”
J. Comput. Phys.
156
(
1
),
89
136
(
1999
).
37.
Z. C.
Zhang
,
S. J.
Yu
, and
S. C.
Chang
, “
A space-time conservation element and solution element method for solving the two-and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes
,”
J. Comput. Phys.
175
(
1
),
168
199
(
2002
).
38.
X.
Zhang
and
C. W.
Shu
, “
On maximum-principle-satisfying high order schemes for scalar conservation laws
,”
J. Comput. Phys.
229
,
3091
3120
(
2010
).
39.
W.
Li
,
Y. X.
Ren
,
G.
Lei
, and
H.
Luo
, “
The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids
,”
J. Comput. Phys.
230
(
21
),
7775
7795
(
2011
).
40.
H.
Shen
,
C. Y.
Wen
, and
D. L.
Zhang
, “
A characteristic space–time conservation element and solution element method for conservation laws
,”
J. Comput. Phys.
288
,
101
118
(
2015
).
41.
H.
Shen
and
C. Y.
Wen
, “
A characteristic space–time conservation element and solution element method for conservation laws II. Multidimensional extension
,”
J. Comput. Phys.
305
,
775
792
(
2016
).
42.
B.
Edney
, “
Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock
,” FFA Report No. 115,
The Aeronautical Research Institute of Sweden
,
1968
.
43.
M.
Fan
,
Z.
Zhai
,
T.
Si
,
X.
Luo
,
L.
Zou
, and
D.
Tan
, “
Numerical study on the evolution of the shock-accelerated SF6 interface: Influence of the interface shape
,”
Sci. China Phys., Mech. Astron.
55
(
2
),
284
296
(
2012
).
You do not currently have access to this content.