A fully compressible four-equation model for multicomponent two-phase flow coupled with a real-fluid phase equilibrium-solver is suggested. It is composed of two mass, one momentum, and one energy balance equations under the mechanical and thermal equilibrium assumptions. The multicomponent characteristics in both liquid and gas phases are considered. The thermodynamic properties are computed using a composite equation of state (EoS), in which each phase follows its own Peng-Robinson (PR) EoS in its range of convexity, and the two-phase mixtures are connected with a set of algebraic equilibrium constraints. The drawback of complex speed of the sound region for the two-phase mixture is avoided using this composite EoS. The phase change is computed using a phase equilibrium-solver, in which the phase stability is examined by the Tangent Plane Distance approach; an isoenergetic-isochoric flash including an isothermal-isobaric flash is applied to determine the phase change. This four-equation model has been implemented into an in-house IFP-C3D software. Extensive comparisons between the four-equation model predictions, experimental measurements in flash boiling cases, and available numerical results were carried out, and good agreements have been obtained. The results demonstrated that this four-equation model can simulate the phase change and capture most real-fluid behaviors for multicomponent two-phase flows. Finally, this validated model was applied to investigate the behaviors of n-dodecane/nitrogen mixtures in one-dimensional shock and double-expansion tubes. The complex wave patterns were unraveled, and the effects of dissolved nitrogen and the volume translation in PR EoS on the wave evolutions were revealed. A three-dimensional transcritical fuel injection is finally simulated to highlight the performance of the proposed four-equation model for multidimensional flows.

1.
Allaire
,
G.
,
Clerc
,
S.
, and
Kokh
,
S.
, “
A five-equation model for the simulation of interfaces between compressible fluids
,”
J. Comput. Phys.
181
,
577
616
(
2002
).
2.
Aly
,
F. A.
and
Lee
,
L. L.
, “
Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy
,”
Fluid Phase Equilib.
6
,
169
179
(
1981
).
3.
Amsden
,
A. A.
,
KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves
(
Los Alamos National Laboratory
,
NM, USA
,
1997
).
4.
Amsden
,
A. A.
,
O’rourke
,
P.
, and
Butler
,
T.
,
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
(
Los Alamos National Laboratory
,
NM, USA
,
1989
).
5.
Andrianov
,
N.
,
Saurel
,
R.
, and
Warnecke
,
G.
, “
A simple method for compressible multiphase mixtures and interfaces
,”
Int. J. Numer. Methods Fluids
41
,
109
131
(
2003
).
6.
Baer
,
M.
and
Nunziato
,
J.
, “
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
,”
Int. J. Multiphase Flow
12
,
861
889
(
1986
).
7.
Baled
,
H.
,
Enick
,
R. M.
,
Wu
,
Y.
,
McHugh
,
M. A.
,
Burgess
,
W.
,
Tapriyal
,
D.
, and
Morreale
,
B. D.
, “
Prediction of hydrocarbon densities at extreme conditions using volume-translated SRK and PR equations of state fit to high temperature, high pressure PVT data
,”
Fluid Phase Equilib.
317
,
65
76
(
2012
).
8.
Banuti
,
D.
, “
Crossing the Widom-line—Supercritical pseudo-boiling
,”
J. Supercrit. Fluids
98
,
12
16
(
2015
).
9.
Battistoni
,
M.
,
Som
,
S.
, and
Longman
,
D. E.
, “
Comparison of mixture and multifluid models for in-nozzle cavitation prediction
,”
J. Eng. Gas Turbines Power
136
,
061506
(
2014
).
10.
Beig
,
S. A.
and
Johnsen
,
E.
, “
Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing
,”
J. Comput. Phys.
302
,
548
566
(
2015
).
11.
Bohbot
,
J.
,
Gillet
,
N.
, and
Benkenida
,
A.
, “
IFP-C3D: An unstructured parallel solver for reactive compressible gas flow with spray
,”
Oil Gas Sci. Technol.-Rev. Inst. Fr. Pet.
64
,
309
335
(
2009
).
12.
Castier
,
M.
, “
Solution of the isochoric–isoenergetic flash problem by direct entropy maximization
,”
Fluid Phase Equilib.
276
,
7
17
(
2009
).
13.
Chiapolino
,
A.
,
Boivin
,
P.
, and
Saurel
,
R.
, “
A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows
,”
Comput. Fluids
150
,
31
45
(
2017
).
14.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
, “
Generalized multiparameter correlation for nonpolar and polar fluid transport properties
,”
Ind. Eng. Chem. Res.
27
,
671
679
(
1988
).
15.
Courant
,
R.
and
Friedrichs
,
K. O.
,
Supersonic Flow and Shock Waves
(
Springer Science & Business Media
,
1999
).
16.
Engine Combustion Network
, see https://ecn.sandia.gov/ for the detailed database (
2018
).
17.
Espósito
,
R. O.
,
Castier
,
M.
, and
Tavares
,
F. W.
, “
Calculations of thermodynamic equilibrium in systems subject to gravitational fields
,”
Chem. Eng. Sci.
55
,
3495
3504
(
2000
).
18.
Flåtten
,
T.
and
Lund
,
H.
, “
Relaxation two-phase flow models and the subcharacteristic condition
,”
Math. Models Methods Appl. Sci.
21
,
2379
2407
(
2011
).
19.
Goncalvès
,
E.
and
Charrière
,
B.
, “
Modelling for isothermal cavitation with a four-equation model
,”
Int. J. Multiphase Flow
59
,
54
72
(
2014
).
20.
Habchi
,
C.
, “
A gibbs energy relaxation (GERM) model for cavitation simulation
,”
Atomization Sprays
25
,
317
334
(
2015
).
21.
Habchi
,
C.
,
Dumont
,
N.
, and
Simonin
,
O.
, “
Multidimensional simulation of cavitating flows in diesel injectors by a homogeneous mixture modeling approach
,”
Atomization Sprays
18
,
129
162
(
2008
).
22.
Kapila
,
A.
,
Menikoff
,
R.
,
Bdzil
,
J.
,
Son
,
S.
, and
Stewart
,
D. S.
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
,
3002
3024
(
2001
).
23.
Kuijpers
,
M.
,
Van Eck
,
D.
,
Kemmere
,
M.
, and
Keurentjes
,
J.
, “
Cavitation-induced reactions in high-pressure carbon dioxide
,”
Science
298
,
1969
1971
(
2002
).
24.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T.
, “
A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction
,”
Comput. Fluids
29
,
849
875
(
2000
).
25.
Kurschat
,
T.
,
Chaves
,
H.
, and
Meier
,
G.
, “
Complete adiabatic evaporation of highly superheated liquid jets
,”
J. Fluid Mech.
236
,
43
59
(
1992
).
26.
Kwak
,
T.
and
Mansoori
,
G.
, “
Van der Waals mixing rules for cubic equations of state: Applications for supercritical fluid extraction modelling
,”
Chem. Eng. Sci.
41
,
1303
1309
(
1986
).
27.
Le Martelot
,
S.
,
Saurel
,
R.
, and
Nkonga
,
B.
, “
Towards the direct numerical simulation of nucleate boiling flows
,”
Int. J. Multiphase Flow
66
,
62
78
(
2014
).
28.
Le Métayer
,
O.
and
Saurel
,
R.
, “
The Noble-Abel stiffened-gas equation of state
,”
Phys. Fluids
28
,
046102
(
2016
).
29.
Linstrom
,
P. J.
and
Mallard
,
W.
, NIST Chemistry Webbook, NIST Standard Reference Database No. 69,
2001
.
30.
Lund
,
H.
, “
A hierarchy of relaxation models for two-phase flow
,”
SIAM J. Appl. Math.
72
,
1713
1741
(
2012
).
31.
Ma
,
P. C.
,
Lv
,
Y.
, and
Ihme
,
M.
, “
An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows
,”
J. Comput. Phys.
340
,
330
357
(
2017
).
32.
Matheis
,
J.
and
Hickel
,
S.
, “
Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN spray A
,”
Int. J. Multiphase Flow
99
,
294
311
(
2018
).
33.
Menikoff
,
R.
and
Plohr
,
B. J.
, “
The Riemann problem for fluid flow of real materials
,”
Rev. Mod. Phys.
61
,
75
(
1989
).
34.
Menter
,
F. R.
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
35.
Michel
,
J.
and
Franc
,
J.
,
Fundamentals of Cavitation
(
Springer
,
2004
).
36.
Michelsen
,
M. L.
, “
The isothermal flash problem. I. Stability
,”
Fluid Phase Equilib.
9
,
1
19
(
1982
).
37.
Moreau
,
J.
,
Simonin
,
O.
, and
Habchi
,
C.
, “
A numerical study of cavitation influence on diesel jet atomisation
,” in
19th Annual Meeting of the Institute for Liquid Atomization and Spray Systems
,
Notthingham, England
,
2004
.
38.
Murrone
,
A.
and
Guillard
,
H.
, “
A five equation reduced model for compressible two phase flow problems
,”
J. Comput. Phys.
202
,
664
698
(
2005
).
39.
Pantano
,
C.
,
Saurel
,
R.
, and
Schmitt
,
T.
, “
An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows
,”
J. Comput. Phys.
335
,
780
811
(
2017
).
40.
Patankar
,
S.
,
Numerical Heat Transfer and Fluid Flow
(
CRC Press
,
1980
).
41.
Peng
,
D.-Y.
and
Robinson
,
D. B.
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
,
59
64
(
1976
).
42.
Perry
,
J. H.
,
Chemical Engineers’ Handbook
(
ACS Publications
,
1950
).
43.
Petitpas
,
F.
,
Franquet
,
E.
,
Saurel
,
R.
, and
Le Metayer
,
O.
, “
A relaxation-projection method for compressible flows. II. Artificial heat exchanges for multiphase shocks
,”
J. Comput. Phys.
225
,
2214
2248
(
2007
).
44.
Petitpas
,
F.
,
Massoni
,
J.
,
Saurel
,
R.
,
Lapebie
,
E.
, and
Munier
,
L.
, “
Diffuse interface model for high speed cavitating underwater systems
,”
Int. J. Multiphase Flow
35
,
747
759
(
2009
).
45.
Qiu
,
L.
,
Wang
,
Y.
,
Jiao
,
Q.
,
Wang
,
H.
, and
Reitz
,
R. D.
, “
Development of a thermodynamically consistent, robust and efficient phase equilibrium solver and its validations
,”
Fuel
115
,
1
16
(
2014
).
46.
Ransom
,
V. H.
and
Hicks
,
D. L.
, “
Hyperbolic two-pressure models for two-phase flow
,”
J. Comput. Phys.
53
,
124
151
(
1984
).
47.
Saha
,
S.
and
Carrolls
,
J. J.
, “
The isoenergetic-isochoric flash
,”
Fluid Phase Equilib.
138
,
23
41
(
1997
).
48.
Saurel
,
R.
and
Abgrall
,
R.
, “
A multiphase Godunov method for compressible multifluid and multiphase flows
,”
J. Comput. Phys.
150
,
425
467
(
1999
).
49.
Saurel
,
R.
,
Boivin
,
P.
, and
Le Métayer
,
O.
, “
A general formulation for cavitating, boiling and evaporating flows
,”
Comput. Fluids
128
,
53
64
(
2016
).
50.
Saurel
,
R.
,
Chinnayya
,
A.
, and
Carmouze
,
Q.
, “
Modelling compressible dense and dilute two-phase flows
,”
Phys. Fluids
29
,
063301
(
2017
).
51.
Saurel
,
R.
,
Petitpas
,
F.
, and
Abgrall
,
R.
, “
Modelling phase transition in metastable liquids: Application to cavitating and flashing flows
,”
J. Fluid Mech.
607
,
313
350
(
2008
).
52.
Saurel
,
R.
,
Petitpas
,
F.
, and
Berry
,
R. A.
, “
Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures
,”
J. Comput. Phys.
228
,
1678
1712
(
2009
).
53.
Schmitt
,
T.
,
Selle
,
L.
,
Cuenot
,
B.
, and
Poinsot
,
T.
, “
Large-eddy Simulation of transcritical flows
,”
C. R. Méc.
337
,
528
538
(
2009
).
54.
Segal
,
C.
and
Polikhov
,
S.
, “
Subcritical to supercritical mixing
,”
Phys. Fluids
20
,
052101
(
2008
).
55.
Simões-Moreira
,
J. R.
, “
Oblique evaporation waves
,”
Shock Waves
10
,
229
234
(
2000
).
56.
Simões-Moreira
,
J. R.
and
Shepherd
,
J. E.
, “
Evaporation waves in superheated dodecane
,”
J. Fluid Mech.
382
,
63
86
(
1999
).
57.
Soave
,
G.
, “
Equilibrium constants from a modified Redlich-Kwong equation of state
,”
Chem. Eng. Sci.
27
,
1197
1203
(
1972
).
58.
Tapriyal
,
D.
,
Enick
,
R.
,
McHugh
,
M.
,
Gamwo
,
I.
, and
Morreale
,
B.
,
High Temperature, High Pressure Equation of State Density Correlations and Viscosity Correlations
(
National Energy Technology Laboratory (NETL)
,
Pittsburgh, PA, and Morgantown, WV
,
2012
).
59.
Terashima
,
H.
,
Kawai
,
S.
, and
Koshi
,
M.
, “
Consistent numerical diffusion terms for simulating compressible multicomponent flows
,”
Comput. Fluids
88
,
484
495
(
2013
).
60.
Terashima
,
H.
and
Koshi
,
M.
, “
Approach for simulating gas–liquid-like flows under supercritical pressures using a high-order central differencing scheme
,”
J. Comput. Phys.
231
,
6907
6923
(
2012
).
61.
Thompson
,
P. A.
,
Craves
,
H.
,
Meier
,
G.
,
Kim
,
Y.-G.
, and
Speckmann
,
H.-D.
, “
Wave splitting in a fluid of large heat capacity
,”
J. Fluid Mech.
185
,
385
414
(
1987
).
62.
Troshko
,
A.
and
Hassan
,
Y.
, “
A two-equation turbulence model of turbulent bubbly flows
,”
Int. J. Multiphase Flow
27
,
1965
2000
(
2001
).
63.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
, “
Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion
,”
Prog. Aeronaut. Sci.
41
,
558
608
(
2005
).
64.
Venkateswaran
,
S.
,
Lindau
,
J. W.
,
Kunz
,
R. F.
, and
Merkle
,
C. L.
, “
Computation of multiphase mixture flows with compressibility effects
,”
J. Comput. Phys.
180
,
54
77
(
2002
).
65.
Vidal
,
J.
,
Thermodynamics: Applications in Chemical Engineering and the Petroleum Industry
(
Editions Technip
,
2003
).
66.
Wang
,
Y.
,
Qiu
,
L.
,
Reitz
,
R. D.
, and
Diwakar
,
R.
, “
Simulating cavitating liquid jets using a compressible and equilibrium two-phase flow solver
,”
Int. J. Multiphase Flow
63
,
52
67
(
2014
).
67.
Wareing
,
C. J.
,
Woolley
,
R. M.
,
Fairweather
,
M.
, and
Falle
,
S. A.
, “
A composite equation of state for the modeling of sonic carbon dioxide jets in carbon capture and storage scenarios
,”
AIChE J.
59
,
3928
3942
(
2013
).
68.
Whitson
,
C. H.
and
Michelsen
,
M. L.
, “
The negative flash
,”
Fluid Phase Equilib.
53
,
51
71
(
1989
).
69.
Wilczek-Vera
,
G.
and
Vera
,
J. H.
, “
Understanding cubic equations of state: A search for the hidden clues of their success
,”
AIChE J.
61
,
2824
2831
(
2015
).
70.
Wood
,
A.
,
A Textbook of Sound
(
G. Bell and Sons Ltd.
,
London
,
1930
), Vol. 23.
71.
Yang
,
S.
,
Habchi
,
C.
,
Yi
,
P.
, and
Lugo
,
R.
, “
Towards a multicomponent real-fluid fully compressible two-phase flow model
,” in
ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems
,
Chicago, IL, USA
,
2018
.
72.
Yang
,
S.
,
Li
,
Y.
,
Wang
,
X.
,
Unnikrishnan
,
U.
,
Yang
,
V.
, and
Sun
,
W.
, “
Comparison of tabulation and correlated dynamic evaluation of real fluid properties for supercritical mixing
,” in
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
2017
.
73.
Zein
,
A.
,
Hantke
,
M.
, and
Warnecke
,
G.
, “
Modeling phase transition for compressible two-phase flows applied to metastable liquids
,”
J. Comput. Phys.
229
,
2964
2998
(
2010
).
You do not currently have access to this content.