A multiple-scale perturbation theory is developed to analyze the advection-diffusion transport of a passive solute through a parallel-plate channel. The fluid velocity comprises a steady and a time-oscillatory component, which may vary spatially in the transverse and streamwise directions, and temporally on the fast transverse diffusion timescale. A long-time asymptotic equation governing the evolution of the transverse averaged solute concentration is derived, complemented with Taylor dispersion coefficients and advection speed corrections that are functions of the streamwise coordinate. We demonstrate the theory with a two-dimensional flow in a channel comprising alternating shear-free and no-slip regions. For a steady flow, the dispersion coefficient changes from zero to a finite value when the flow transitions from plug-like in the shear-free section to parabolic in the no-slip region. For an oscillatory flow, the dispersion coefficient due to an oscillatory flow can be negative and two orders of magnitude larger than that due to a steady flow of the same amplitude. This motivates us to quantify the relative magnitude of the steady and oscillatory flow such that there is an overall positive dispersion coefficient necessary for an averaged (macrotransport) equation. We further substitute the transport coefficients into the averaged equation to compute the evolution of the concentration profile, which agrees well with that obtained by solving the full two-dimensional advection-diffusion equation. In a steady flow, we find that while the shear-free section suppresses band broadening, the following no-slip section may lead to a wider band compared with the dispersion driven by the same pressure gradient in an otherwise homogeneously no-slip channel. In an unsteady flow, we demonstrate that a naive implementation of the macrotransport theory with a (localized) negative dispersion coefficient will result in an aphysical finite time singularity (or “blow-up solution”), in contrast to the well-behaved solution of the full advection-diffusion equation.

1.
G. I.
Taylor
, “
Dispersion of soluble matter in solvent flowing slowly through a tube
,”
Proc. R. Soc. London, Ser. A
219
,
186
203
(
1953
).
2.
R.
Aris
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. London, Ser. A
235
,
67
77
(
1956
).
3.
M. T.
Blom
,
E.
Chmela
,
R. E.
Oosterbroek
,
R.
Tijssen
, and
A.
van den Berg
, “
On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules
,”
Anal. Chem.
75
,
6761
6768
(
2003
).
4.
H.
Cottet
,
J. P.
Biron
, and
M.
Martin
, “
Taylor dispersion analysis of mixtures
,”
Anal. Chem.
79
,
9066
9073
(
2007
).
5.
L.
Cipelletti
,
J. P.
Biron
,
M.
Martin
, and
H.
Cottet
, “
Measuring arbitrary diffusion coefficient distributions of nano-objects by Taylor dispersion analysis
,”
Anal. Chem.
87
,
8489
8496
(
2015
).
6.
R.
Smith
, “
Contaminant dispersion in oscillatory flows
,”
J. Fluid Mech.
114
,
379
398
(
1982
).
7.
S. M.
Kashefipour
and
R. A.
Falconer
, “
Longitudinal dispersion coefficients in natural channels
,”
Water Res.
36
,
1596
1608
(
2002
).
8.
C. J. L.
Taylor
, “
The effects of biological fouling control at coastal and estuarine power stations
,”
Mar. Pollut. Bull.
53
,
30
48
(
2006
).
9.
M. S.
Roberts
and
M.
Rowland
, “
A dispersion model of hepatic elimination: 2. Steady-state considerations-influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity
,”
J. Pharmacokinet. Pharmacodyn.
14
,
261
288
(
1986
).
10.
F.
Gentile
,
M.
Ferrari
, and
P.
Decuzzi
, “
The transport of nanoparticles in blood vessels: The effect of vessel permeability and blood rheology
,”
Ann. Biomed. Eng.
36
,
254
261
(
2007
).
11.
J.
Tan
,
A.
Thomas
, and
Y.
Liu
, “
Influence of red blood cells on nanoparticle targeted delivery in microcirculation
,”
Soft Matter
8
,
1934
1946
(
2012
).
12.
J. B.
Grotberg
, “
Pulmonary flow and transport phenomena
,”
Annu. Rev. Fluid Mech.
26
,
529
571
(
1994
).
13.
G. A.
Ledezma
,
A.
Folch
,
S. N.
Bhatia
,
U. J.
Balis
,
M. L.
Yarmush
, and
M.
Toner
, “
Numerical model of fluid flow and oxygen transport in a radial-flow microchannel containing hepatocytes
,”
J. Biomech. Eng.
121
,
58
64
(
1999
).
14.
D. A.
Beard
and
F.
Wu
, “
Apparent diffusivity and Taylor dispersion of water and solutes in capillary beds
,”
Bull. Math. Biol.
71
,
1366
1377
(
2009
).
15.
K.
Gulabivala
,
Y. L.
Ng
,
M.
Gilbertson
, and
I.
Eames
, “
The fluid mechanics of root canal irrigation
,”
Physiol. Meas.
31
,
R49
R84
(
2010
).
16.
W.
Ding
,
W.
Li
,
S.
Sun
,
X.
Zhou
,
P. A.
Hardy
,
S.
Ahmad
, and
D.
Gao
, “
Three-dimensional simulation of mass transfer in artificial kidneys
,”
Artif. Organs
39
,
E79
E89
(
2015
).
17.
R.
Aris
, “
On the dispersion of a solute by diffusion, convection and exchange between phases
,”
Proc. R. Soc. London, Ser. A
252
,
538
550
(
1959
).
18.
C. C.
Mei
,
J. L.
Auriault
, and
C. O.
Ng
, “
Some applications of the homogenization theory
,”
Adv. Appl. Mech.
32
,
277
348
(
1996
).
19.
P. C.
Chatwin
, “
The approach to normality of the concentration distribution of solute in a solvent flowing along a straight pipe
,”
J. Fluid Mech.
43
,
321
352
(
1970
).
20.
N. G.
Barton
, “
On the method of moments for solute dispersion
,”
J. Fluid Mech.
126
,
205
218
(
1983
).
21.
S.
Vedel
and
H.
Bruus
, “
Transient Taylor-Aris dispersion for time-dependent flows in straight channels
,”
J. Fluid Mech.
691
,
95
122
(
2012
).
22.
S.
Vedel
,
E.
Howad
, and
H.
Bruus
, “
Time-dependent Taylor-Aris dispersion of an initial point concentration
,”
J. Fluid Mech.
752
,
107
122
(
2014
).
23.
S.
Debnath
,
A. K.
Saha
,
B. S.
Mazumder
, and
A. K.
Roy
, “
Laminar dispersion at low and high peclet numbers in finite-length patterned microtubes
,”
Phys. Fluids
29
,
097107
(
2017
).
24.
M. J.
Lighthill
, “
Initial development of diffusion in Poiseuille flow
,”
J. Inst. Maths. Applics.
2
,
97
108
(
1966
).
25.
W. N.
Gill
and
R.
Sankarasubramanian
, “
Exact analysis of unsteady convective diffusion
,”
Proc. R. Soc. London, Ser. A
316
,
341
350
(
1970
).
26.
R.
Smith
, “
A delay-diffusion description for contaminant dispersion
,”
J. Fluid Mech.
105
,
469
486
(
1981
).
27.
A. N.
Stokes
and
N. G.
Barton
, “
The concentration distribution produced by shear dispersion of solute in Poiseuille flow
,”
J. Fluid Mech.
210
,
201
221
(
1990
).
28.
C. G.
Phillips
and
S. R.
Kaye
, “
A uniformly asymptotic approximation for the development of shear dispersion
,”
J. Fluid Mech.
329
,
413
443
(
1996
).
29.
W. N.
Gill
and
R.
Sankarasubramanian
, “
Dispersion of a non-uniform slug in time-dependent flow
,”
Proc. R. Soc. London, Ser. A
322
,
101
117
(
1971
).
30.
P. C.
Chatwin
, “
On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes
,”
J. Fluid Mech.
71
,
513
527
(
1975
).
31.
H.
Brenner
, “
A general theory of Taylor dispersion phenomena. II. An extension
,”
PhysicoChem. Hydrodyn.
3
,
139
157
(
1982
).
32.
M.
Shapiro
and
H.
Brenner
, “
Taylor dispersion in the presence of time-periodic convection phenomena. Part II. Transport of transversely oscillating Brownian particles in a plane Poiseuille flow
,”
Phys. Fluids
2
,
1744
1753
(
1990
).
33.
R.
Smith
, “
Longitudinal dispersion coefficients for varying channels
,”
J. Fluid Mech.
130
,
299
314
(
1983
).
34.
H. A.
Stone
and
H.
Brenner
, “
Dispersion in flows with streamwise variations of mean velocity: Radial flow
,”
Ind. Eng. Chem. Res.
38
,
851
854
(
1999
).
35.
W. N.
Gill
and
U.
Guceri
, “
Laminar dispersion in Jeffery-Hamel flows: Part 1. Diverging channels
,”
AIChE J.
17
,
207
214
(
1971
).
36.
M. D.
Bryden
and
H.
Brenner
, “
Multiple-timescale analysis of Taylor dispersion in converging and diverging flows
,”
J. Fluid Mech.
311
,
343
359
(
1996
).
37.
H.
Brenner
, “
Dispersion resulting from flow through spatially periodic porous media
,”
Proc. R. Soc. London, Ser. A
297
,
81
133
(
1980
).
38.
A.
Adrover
and
S.
Cerbelli
, “
Laminar dispersion at low and high peclet numbers in finite-length patterned microtubes
,”
Phys. Fluids
29
,
062005
(
2017
).
39.
A.
Adrover
,
S.
Cerbelli
, and
M.
Giona
, “
Taming axial dispersion in hydrodynamic chromatography columns through wall patterning
,”
Phys. Fluids
30
,
042002
(
2018
).
40.
D. L.
Koch
and
J. F.
Brady
, “
A non-local description of advection-diffusion with application to dispersion in porous media
,”
J. Fluid Mech.
180
,
387
403
(
1989
).
41.
S. P.
Neuman
, “
Eulerian-Lagrangian theory of transport in space-time nonstationary velocity fields: Exact nonlocal formalism by conditional moments and weak approximation
,”
Water Resour. Res.
29
,
633
645
, https://doi.org/10.1029/92wr02306 (
1993
).
42.
S.
Ghosal
and
S.
Datta
, “
The effect of wall interactions in capillary-zone electrophoresis
,”
J. Fluid Mech.
491
,
285
300
(
2003
).
43.
S.
Datta
and
S.
Ghosal
, “
Dispersion due to wall interactions in microfluidic separation systems
,”
J. Fluid Mech.
20
,
012103
(
2008
).
44.
J. P.
Gleeson
and
H. A.
Stone
, “
Taylor dispersion in electroosmotic flows with random zeta potentials
,”
Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show
(
TechConnect
,
2004
) Vol. 2, pp.
375
378
.
45.
P. C.
Fife
and
K. R. K.
Nicholes
, “
Dispersion in flow through small tubes
,”
Proc. R. Soc. London, Ser. A
344
,
131
145
(
1975
).
46.
C. O.
Ng
, “
Dispersion in steady and oscillatory flows through a tube with reversible and irreversible wall reactions
,”
Proc. R. Soc. London, Ser. A
462
,
481
515
(
2006
).
47.
C.
Vargas
,
J.
Arcos
,
O.
Bautista
, and
F.
Mendez
, “
Hydrodynamic dispersion in a combined magnetohydrodynamic-electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials
,”
Phys. Fluids
29
,
092002
(
2017
).
48.
A.
Mukherjee
and
B. S.
Mazumder
, “
Dispersion of contaminant in oscillatory flows
,”
Acta Mech.
74
,
107
122
(
1988
).
49.
B. S.
Mazumder
and
S. K.
Das
, “
Effect of boundary reaction on solute dispersion in pulsatile flow through a tube
,”
J. Fluid Mech.
239
,
523
549
(
1992
).
50.
S.
Bandyopadhyay
and
B. S.
Mazumder
, “
On contaminant dispersion in unsteady generalised Couette flow
,”
Int. J. Eng. Sci.
37
,
1407
1423
(
1999
).
51.
S.
Bandyopadhyay
and
B. S.
Mazumder
, “
Unsteady convective diffusion in a pulsatile flow through a channel
,”
Acta Mech.
134
,
1
16
(
1999
).
52.
J. R.
Philip
, “
Flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys.
23
,
353
372
(
1972
).
53.
E.
Lauga
and
H. A.
Stone
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
77
(
2003
).
54.
T. M.
Squires
, “
Electrokinetic flows over inhomogeneously slipping surfaces
,”
Phys. Fluids
20
,
092105
(
2008
).
55.
C. O.
Ng
,
H. C. W.
Chu
, and
C. Y.
Wang
, “
On the effects of liquid-gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls
,”
Phys. Fluids
22
,
102002
(
2010
).
56.
O. I.
Vinogradova
and
A. V.
Belyaev
, “
Wetting, roughness and flow boundary conditions
,”
J. Phys.: Condens. Matter
23
,
184104
(
2011
).
57.
H. C. W.
Chu
and
C. O.
Ng
, “
Electroosmotic flow through a circular tube with slip-stick striped walls
,”
J. Fluids Eng.
134
,
111201
(
2012
).
58.
H. C. W.
Chu
and
C. O.
Ng
, “
Oscillatory electro-osmotic flow through a slit channel with slipping stripes on walls
,”
Fluid Dyn. Res.
45
,
022507
(
2013
).
59.
C. O.
Ng
and
H. C. W.
Chu
, “
Electrokinetic flows through a parallel-plate channel with slipping stripes on walls
,”
Phys. Fluids
23
,
102002
(
2011
).
60.
R.
Aris
, “
On the dispersion of a solute in pulsating flow through a tube
,”
Proc. R. Soc. London, Ser. A
259
,
370
376
(
1960
).
61.
R.
Smith
, “
Dispersion of tracers in the deep ocean
,”
J. Fluid Mech.
123
,
131
142
(
1982
).
62.
R.
Smith
, “
The contraction of contaminant distributions in reversing flows
,”
J. Fluid Mech.
129
,
137
151
(
1983
).
63.
E. J.
Watson
, “
Diffusion in oscillatory pipe flow
,”
J. Fluid Mech.
133
,
233
244
(
1983
).
64.
H.
Yasuda
, “
Longitudinal dispersion of matter due to the shear effect of steady and oscillatory currents
,”
J. Fluid Mech.
148
,
383
403
(
1984
).
65.
M. R.
Doshi
,
P. M.
Daiya
, and
W. N.
Gill
, “
Three dimensional laminar dispersion in open and closed rectangular conduits
,”
Chem. Eng. Sci.
33
,
795
804
(
1978
).
66.
P. C.
Chatwin
and
P. J.
Sullivan
, “
The effect of aspect ratio on longitudinal diffusivity in rectangular channels
,”
J. Fluid Mech.
120
,
347
358
(
1982
).
67.
A.
Ajdari
,
N.
Bontoux
, and
H. A.
Stone
, “
Hydrodynamic dispersion in shallow microchannels: The effect of cross-sectional shape
,”
Anal. Chem.
78
,
387
392
(
2006
).
68.
D.
Dutta
,
A.
Ramachandran
, and
D. T.
Leighton
, “
Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems
,”
Microfluid. Nanofluid.
2
,
275
290
(
2006
).
69.
S.
Datta
and
S.
Ghosal
, “
Characterizing dispersion in micro-fluidic channels
,”
Lab Chip
9
,
2537
2550
(
2009
).
You do not currently have access to this content.