Complex geometries and open boundaries have been intensively studied in the nearly incompressible lattice Boltzmann method (LBM) framework. Therefore, only few boundary conditions for the high speed fully compressible LBM have been proposed. This paper deals with the definition of efficient boundary conditions for the compressible LBM methods, with the emphasis put on the newly proposed hybrid recursive regularized D3Q19 LBM (HRR-LBM) with applications to compressible aerodynamics. The straightforward simple extrapolation-based far-field boundary conditions, the characteristic boundary conditions, and the absorbing sponge layer approach are extended and estimated in the HRR-LBM for the choice of open boundaries. Moreover, a cut-cell type approach to handle the immersed solid is proposed to model both slip and no-slip wall boundary conditions with either isothermal or adiabatic behavior. The proposed implementations are assessed considering the simulation of (i) isentropic vortex convection with subsonic to supersonic inflow and outflow conditions, (ii) two-dimensional (2D) compressible mixing layer, (iii) steady inviscid transonic flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil, (iv) unsteady viscous transonic flow over a NACA 0012 airfoil, and (v) three-dimensional (3D) transonic flows over a German Aerospace Center (DLR) F6 full aircraft configuration.

1.
J.
Slotnick
,
A.
Khodadoust
,
J.
Alonso
,
D.
Darmofal
,
W.
Gropp
,
E.
Lurie
, and
D.
Mavriplis
, “
CFD vision 2030 study: A path to revolutionary computational aerosciences
,” NASA Technical Report 218178,
2014
, pp.
1
58
.
2.
A. A.
Mohamad
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes
(
Springer Science & Business Media
,
2011
).
3.
Z.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and Its Applications in Engineering
(
World Scientific
,
2013
), Vol. 3.
4.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer International Publishing
,
2017
), Vol. 10, pp.
978
983
.
5.
Y.-H.
Qian
,
D.
d’Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
,
479
(
1992
).
6.
S. Y.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
7.
I.
Cheylan
,
G.
Fritz
,
D.
Ricot
, and
P.
Sagaut
, “
Shape optimization using the adjoint lattice Boltzmann method for aerodynamic applications
,”
AIAA J.
57
,
2758
(
2019
).
8.
L.
Hao
,
K.
Moriyama
,
W.
Gu
, and
C.-Y.
Wang
, “
Three dimensional computations and experimental comparisons for a large-scale proton exchange membrane fuel cell
,”
J. Electrochem. Soc.
163
,
F744
F751
(
2016
).
9.
N. H.
Ahmad
,
A.
Inagaki
,
M.
Kanda
,
N.
Onodera
, and
T.
Aoki
, “
Large-eddy simulation of the gust index in an urban area using the lattice Boltzmann method
,”
Boundary-Layer Meteorol.
163
,
447
467
(
2017
).
10.
J.
Jacob
and
P.
Sagaut
, “
Wind comfort assessment by means of large eddy simulation with lattice Boltzmann method in full scale city area
,”
Build. Environ.
139
,
110
124
(
2018
).
11.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows
,”
Phys. Rev. E
100
,
023304
(
2019
).
12.
S.
Chateau
,
J.
Favier
,
U.
D’ortona
, and
S.
Poncet
, “
Transport efficiency of metachronal waves in 3D cilium arrays immersed in a two-phase flow
,”
J. Fluid Mech.
824
,
931
961
(
2017
).
13.
T. J.
Poinsot
and
S.
Lelef
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
14.
T.
Colonius
, “
Modeling artificial boundary conditions for compressible flow
,”
Annu. Rev. Fluid Mech.
36
,
315
345
(
2004
).
15.
A.
Filippone
, “
Aircraft noise prediction
,”
Prog. Aerosp. Sci.
68
,
27
63
(
2014
).
16.
C.
Rakopoulos
,
A.
Dimaratos
,
E.
Giakoumis
, and
D.
Rakopoulos
, “
Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends
,”
Appl. Energy
88
,
3905
3916
(
2011
).
17.
J. H.
Seo
and
Y. J.
Moon
, “
Aerodynamic noise prediction for long-span bodies
,”
J. Sound Vib.
306
,
564
579
(
2007
).
18.
R. S.
Maier
,
R. S.
Bernard
, and
D. W.
Grunau
, “
Boundary conditions for the lattice Boltzmann method
,”
Phys. Fluids
8
,
1788
1801
(
1996
).
19.
Q.
Zou
and
X.
He
, “
On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
,”
Phys. Fluids
9
,
1591
1598
(
1997
).
20.
M.
Sbragaglia
and
S.
Succi
, “
Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions
,”
Phys. Fluids
17
,
093602
(
2005
).
21.
G.
Tang
,
W.
Tao
, and
Y.
He
, “
Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions
,”
Phys. Fluids
17
,
058101
(
2005
).
22.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
An extrapolation method for boundary conditions in lattice Boltzmann method
,”
Phys. Fluids
14
,
2007
2010
(
2002
).
23.
S. S.
Chikatamarla
and
I. V.
Karlin
, “
Entropic lattice Boltzmann method for turbulent flow simulations: Boundary conditions
,”
Physica A
392
,
1925
1930
(
2013
).
24.
B.
Dorschner
,
F.
Bösch
,
S. S.
Chikatamarla
,
K.
Boulouchos
, and
I. V.
Karlin
, “
Entropic multi-relaxation time lattice Boltzmann model for complex flows
,”
J. Fluid Mech.
801
,
623
651
(
2016
).
25.
S.
Khirevich
and
T. W.
Patzek
, “
Behavior of numerical error in pore-scale lattice Boltzmann simulations with simple bounce-back rule: Analysis and highly accurate extrapolation
,”
Phys. Fluids
30
,
093604
(
2018
).
26.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
27.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
,
602
628
(
2004
).
28.
T.
Krüger
,
F.
Varnik
, and
D.
Raabe
, “
Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method
,”
Comput. Math. Appl.
61
,
3485
3505
(
2011
).
29.
J.
Favier
,
A.
Revell
, and
A.
Pinelli
, “
A lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects
,”
J. Comput. Phys.
261
,
145
161
(
2014
).
30.
G.-Q.
Chen
,
X.
Huang
,
A.-M.
Zhang
,
S.-P.
Wang
, and
T.
Li
, “
Three-dimensional simulation of a rising bubble in the presence of spherical obstacles by the immersed boundary–lattice Boltzmann method
,”
Phys. Fluids
31
,
097104
(
2019
).
31.
S.
Gsell
,
U.
D’ortona
, and
J.
Favier
, “
Explicit and viscosity-independent immersed-boundary scheme for the lattice Boltzmann method
,”
Phys. Rev. E
100
,
033306
(
2019
).
32.
J.
Han
,
Z.
Yuan
, and
G.
Chen
, “
Effects of kinematic parameters on three-dimensional flapping wing at low Reynolds number
,”
Phys. Fluids
30
,
081901
(
2018
).
33.
Z.
Fang
,
C.
Gong
,
A.
Revell
,
G.
Chen
,
A.
Harwood
, and
J.
O’Connor
, “
Passive separation control of a NACA0012 airfoil via a flexible flap
,”
Phys. Fluids
31
,
101904
(
2019
).
34.
C. K.
Aidun
and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex flows
,”
Annu. Rev. Fluid Mech.
42
,
439
472
(
2010
).
35.
Z.
Chen
,
C.
Shu
, and
D.
Tan
, “
Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows
,”
Phys. Fluids
30
,
053601
(
2018
).
36.
K.
Dehee
,
K. H.
Min
,
S. M.
Jhon
,
J. S.
Vinay
 III
, and
B.
John
, “
A characteristic non-reflecting boundary treatment in lattice Boltzmann method
,”
Chin. Phys. Lett.
25
,
1964
(
2008
).
37.
S.
Izquierdo
and
N.
Fueyo
, “
Characteristic nonreflecting boundary conditions for open boundaries in lattice Boltzmann methods
,”
Phys. Rev. E
78
,
046707
(
2008
).
38.
A.
Najafi-Yazdi
and
L.
Mongeau
, “
An absorbing boundary condition for the lattice Boltzmann method based on the perfectly matched layer
,”
Comput. Fluids
68
,
203
218
(
2012
).
39.
D.
Yu
,
R.
Mei
, and
W.
Shyy
, “
Improved treatment of the open boundary in the method of lattice Boltzmann equation
,”
Prog. Comput. Fluid Dyn.
5
,
3
12
(
2005
).
40.
S.
Izquierdo
,
P.
Martínez-Lera
, and
N.
Fueyo
, “
Analysis of open boundary effects in unsteady lattice Boltzmann simulations
,”
Comput. Math. Appl.
58
,
914
921
(
2009
).
41.
M.
Junk
and
Z.
Yang
, “
Outflow boundary conditions for the lattice Boltzmann method
,”
Prog. Comput. Fluid Dyn., Int. J.
8
,
38
48
(
2008
).
42.
H.
Xu
and
P.
Sagaut
, “
Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods
,”
J. Comput. Phys.
245
,
14
42
(
2013
).
43.
Z.
Yang
, “
Lattice Boltzmann outflow treatments: Convective conditions and others
,”
Comput. Math. Appl.
65
,
160
171
(
2013
).
44.
Q.
Lou
,
Z.
Guo
, and
B.
Shi
, “
Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation
,”
Phys. Rev. E
87
,
063301
(
2013
).
45.
D.
Heubes
,
A.
Bartel
, and
M.
Ehrhardt
, “
Characteristic boundary conditions in the lattice Boltzmann method for fluid and gas dynamics
,”
J. Comput. Appl. Math.
262
,
51
61
(
2014
).
46.
D.
Heubes
,
A.
Bartel
, and
M.
Ehrhardt
, “
Exact artificial boundary conditions for a lattice Boltzmann method
,”
Comput. Math. Appl.
67
,
2041
2054
(
2014
).
47.
N.
Jung
,
H. W.
Seo
, and
C. S.
Yoo
, “
Two-dimensional characteristic boundary conditions for open boundaries in the lattice Boltzmann methods
,”
J. Comput. Phys.
302
,
191
199
(
2015
).
48.
G.
Wissocq
,
N.
Gourdain
,
O.
Malaspinas
, and
A.
Eyssartier
, “
Regularized characteristic boundary conditions for the lattice-Boltzmann methods at high Reynolds number flows
,”
J. Comput. Phys.
331
,
1
18
(
2017
).
49.
W.
Shao
and
J.
Li
, “
An absorbing boundary condition based on perfectly matched layer technique combined with discontinuous Galerkin Boltzmann method for low Mach number flow noise
,”
J. Theor. Comput. Acoust.
26
,
1850011
(
2018
).
50.
E. W. S.
Kam
,
R. M. C.
So
, and
R. C. K.
Leung
, “
Lattice Boltzman method simulation of aeroacoustics and nonreflecting boundary conditions
,”
AIAA J.
45
,
1703
1712
(
2007
).
51.
R. C.
So
,
S.
Fu
, and
R. K.
Leung
, “
Finite difference lattice Boltzmann method for compressible thermal fluids
,”
AIAA J.
48
,
1059
1071
(
2010
).
52.
R.
So
,
R.
Leung
,
E.
Kam
, and
S.
Fu
, “
Progress in the development of a new lattice Boltzmann method
,”
Comput. Fluids
190
,
440
(
2019
).
53.
N.
Frapolli
,
S. S.
Chikatamarla
, and
I. V.
Karlin
, “
Entropic lattice Boltzmann model for compressible flows
,”
Phys. Rev. E
92
,
061301
(
2015
).
54.
W.
van der Velden
,
D.
Casalino
,
P.
Gopalakrishnan
,
A.
Jammalamadaka
,
Y.
Li
,
R.
Zhang
, and
H.
Chen
, “
Validation of jet noise simulations and resulting insights of acoustic near field
,”
AIAA J.
1
12
(
2019
).
55.
F.
Renard
,
J.
Boussuge
,
Y.
Feng
, and
P.
Sagaut
, “
Compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows
,”
Phys. Rev. E
(submitted).
56.
S.
Guo
,
Y.
Feng
,
J.
Jacob
, and
P.
Sagaut
, “
An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice
,”
J. Comput. Phys.
(submitted).
57.
D.
Singh
,
B.
Konig
,
E.
Fares
,
M.
Murayama
,
Y.
Ito
,
Y.
Yokokawa
, and
K.
Yamamoto
, “
Lattice-Boltzmann simulations of the JAXA JSM high-lift configuration in a wind tunnel
,” in
AIAA Scitech 2019 Forum
(
AIAA
,
2019
), p.
1333
.
58.
Y.
Hou
,
D.
Angland
,
A.
Sengissen
, and
A.
Scotto
, “
Lattice-Boltzmann and Navier-Stokes simulations of the partially dressed, cavity-closed nose landing gear benchmark case
,” in
25th AIAA/CEAS Aeroacoustics Conference
(
AIAA
,
2019
), p.
2555
.
59.
X. W.
Shan
,
X. F.
Yuan
, and
H. D.
Chen
, “
Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation
,”
J. Fluid Mech.
550
,
413
441
(
2006
).
60.
D.
Siebert
,
L.
Hegele
, Jr.
, and
P.
Philippi
, “
Lattice Boltzmann equation linear stability analysis: Thermal and athermal models
,”
Phys. Rev. E
77
,
026707
(
2008
).
61.
O.
Malaspinas
, “
Increasing stability and accuracy of the lattice Boltzmann scheme: Recursivity and regularization
,” preprint arXiv:1505.06900 (
2015
).
62.
Y.
Feng
,
P.
Sagaut
, and
W.
Tao
, “
A three dimensional lattice model for thermal compressible flow on standard lattices
,”
J. Comput. Phys.
303
,
514
529
(
2015
).
63.
A.
Jameson
, “
Origins and further development of the Jameson–Schmidt–Turkel scheme
,”
AIAA J.
55
,
1487
1510
(
2017
).
64.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows
,”
J. Comput. Phys.
394
,
82
(
2019
).
65.
K. H.
Kim
,
C.
Kim
, and
O.-H.
Rho
, “
Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme
,”
J. Comput. Phys.
174
,
38
80
(
2001
).
66.
C.
Hirsch
,
Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics
(
Elsevier
,
2007
).
67.
D.
Shepard
, “
A two-dimensional interpolation function for irregularly-spaced data
,” in
Proceedings of the 1968 23rd ACM National Conference
(
ACM
,
1968
), pp.
517
524
.
68.
T.
Gao
,
Y.-H.
Tseng
, and
X.-Y.
Lu
, “
An improved hybrid Cartesian/immersed boundary method for fluid–solid flows
,”
Int. J. Numer. Methods Fluids
55
,
1189
1211
(
2007
).
69.
O.
Malaspinas
,
B.
Chopard
, and
J.
Latt
, “
General regularized boundary condition for multi-speed lattice Boltzmann models
,”
Comput. Fluids
49
,
29
35
(
2011
).
70.
G.
Wissocq
,
P.
Sagaut
, and
J.
Boussuge
, “
An extended spectral analysis of the lattice Boltzmann method: Modal interactions and stability issues
,”
J. Comput. Phys.
380
,
311
333
(
2019
).
71.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
72.
M.
Tavelli
and
M.
Dumbser
, “
A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers
,”
J. Comput. Phys.
341
,
341
376
(
2017
).
73.
T.
Colonius
,
S. K.
Lele
, and
P.
Moin
, “
Sound generation in a mixing layer
,”
J. Fluid Mech.
330
,
375
409
(
1997
).
74.
L. C.
Cheung
and
S. K.
Lele
, “
Linear and nonlinear processes in two-dimensional mixing layer dynamics and sound radiation
,”
J. Fluid Mech.
625
,
321
351
(
2009
).
75.
J.
Ko
,
D.
Lucor
, and
P.
Sagaut
, “
Sensitivity of two-dimensional spatially developing mixing layers with respect to uncertain inflow conditions
,”
Phys. Fluids
20
,
077102
(
2008
).
76.
J. C.
Vassberg
and
A.
Jameson
, “
In pursuit of grid convergence for two-dimensional Euler solutions
,”
J. Aircr.
47
,
1152
1166
(
2010
).
77.
V. G.
Ferreira
,
R. A.
de Queiroz
,
M. A. C.
Candezano
,
G. A.
Lima
,
L.
Corrêa
,
C. M.
Oishi
, and
F. L.
Santos
, “
Simulation results and applications of an advection bounded scheme to practical flows
,”
Comput. Appl. Math.
31
,
591
616
(
2012
).
78.
M. O.
Bristeau
,
Numerical Simulation of Compressible Navier-Stokes Flows: A GAMM Workshop
(
Springer Science & Business Media
,
2013
), Vol. 18.
79.
O.
Brodersen
,
B.
Eisfeld
,
J.
Raddatz
, and
P.
Frohnapfel
, “
DLR results from the third AIAA computational fluid dynamics drag prediction workshop
,”
J. Aircr.
45
,
823
836
(
2008
).
80.
O.
Brodersen
, “
Drag prediction of engine-airframe interference effects using unstructured Navier-Stokes calculations
,”
J. Aircr.
39
,
927
935
(
2002
).
81.
F.
Palacios
,
J.
Alonso
,
K.
Duraisamy
,
M.
Colonno
,
J.
Hicken
,
A.
Aranake
,
A.
Campos
,
S.
Copeland
,
T.
Economon
,
A.
Lonkar
 et al., “
Stanford university unstructured (SU 2): An open-source integrated computational environment for multi-physics simulation and design
,” in
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2013
), p.
287
.
You do not currently have access to this content.