This work presents systematical investigations on the skin-friction drag reduction (DR) of turbulent channel flow subjected to spanwise wall oscillation using direct numerical simulation. Altogether 12 different oscillatory cases have been studied with a reference at Reτ = 200, varying the controlling parameters characterized by maximum wall velocity Wm+ and oscillation period T+. Some of the previously established facts have been reproduced by our analysis with a new focus on the phase-space dynamics of the near-wall streaks, on the basis of statistical data over entire oscillation periods and over phasewise variations. It is revealed that streamwise vortices are generated in the vicinity of oscillation walls, disrupting the formation of near-wall low-speed streaks. Although the overall turbulence is weakened, the Stokes layer is thicker within wall acceleration phases for larger Wm+, which causes the turbulence intensity to increase in the upper viscous sublayer. In addition, regarding the effect of T+, a long oscillation period promotes the formation of energetic near-wall structures, while for short T+, the streak-generation time scale preferentially restricts the growth of spanwise streaks. From a new vorticity-transport perspective of the Reynolds shear stress, our results further indicate that high drag-reducing phenomena are connected to the near-wall sweep events, and the shear stress variation is principally driven by the distortion of the spanwise transport of wall-normal vorticity, i.e., vortex tilting/stretching. The DR process is seen to be linked to the increase in enstrophy and turbulence-energy dissipation in the near-wall region.

1.
D.
Bushnell
, “
Aircraft drag reduction—A review
,”
Proc. Inst. Mech. Eng., Part G
217
,
1
18
(
2003
).
2.
B. A.
Jubran
,
Y. H.
Zurigat
, and
M. F. A.
Goosen
, “
Drag reducing agents in multiphase flow pipelines: Recent trends and future needs
,”
Pet. Sci. Technol.
23
,
1403
1424
(
2005
).
3.
J.
Kim
, “
Physics and control of wall turbulence for drag reduction
,”
Philos. Trans. R. Soc., A
369
,
1396
1411
(
2011
).
4.
W. J.
Jung
,
N.
Mangiavacchi
, and
R.
Akhavan
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids
4
,
1605
1607
(
1992
).
5.
R.
Akhavan
,
W. J.
Jung
, and
N.
Mangiavacchi
, “
Turbulence control in wall-bounded flows by spanwise oscillations
,”
Appl. Sci. Res.
51
,
299
303
(
1993
).
6.
A.
Baron
and
M.
Quadrio
, “
Turbulent drag reduction by spanwise wall oscillations
,”
Appl. Sci. Res.
55
,
311
326
(
1996
).
7.
F.
Laadhari
,
L.
Skandaji
, and
R.
Morel
, “
Turbulence reduction in a boundary layer by a local spanwise oscillating surface
,”
Phys. Fluids
6
,
3218
3220
(
1994
).
8.
G. M.
Di Cicca
,
G.
Iuso
,
P. G.
Spazzini
, and
M.
Onorato
, “
Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations
,”
J. Fluid Mech.
467
,
41
56
(
2002
).
9.
K.-S.
Choi
, “
Near-wall structure of turbulent boundary layer with spanwise-wall oscillation
,”
Phys. Fluids
14
,
2530
(
2002
).
10.
P.
Ricco
, “
Modification of near-wall turbulence due to spanwise wall oscillations
,”
J. Turbul.
5
,
24
(
2004
).
11.
S.
Ghebali
,
S. I.
Chernyshenko
, and
M. A.
Leschziner
, “
Can large-scale oblique undulations on a solid wall reduce the turbulent drag?
,”
Phys. Fluids
29
,
105102
(
2017
).
12.
S. S.
Saravi
and
K.
Cheng
, “
A review of drag reduction by riblets and micro-textures in the turbulent boundary layers
,”
Eur. Sci. J.
9
,
62
81
(
2013
).
13.
C. M. J.
Tay
,
B. C.
Khoo
, and
Y. T.
Chew
, “
Mechanics of drag reduction by shallow dimples in channel flow
,”
Phys. Fluids
27
,
035109
(
2015
).
14.
T. C.
Corke
and
F. O.
Thomas
, “
Active and passive turbulent boundary-layer drag reduction
,”
AIAA J.
56
,
3835
3847
(
2018
).
15.
M. T.
Hehner
,
D.
Gatti
, and
J.
Kriegseis
, “
Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction
,”
Phys. Fluids
31
,
051701
(
2019
).
16.
M. R.
Dhanak
and
C.
Si
, “
On reduction of turbulent wall friction through spanwise wall oscillations
,”
J. Fluid Mech.
383
,
175
195
(
1999
).
17.
I.
Galionis
and
P.
Hall
, “
On the stabilization of the most amplified Görtler vortex on a concave surface by spanwise oscillations
,”
J. Fluid Mech.
527
,
265
283
(
2005
).
18.
M.
Skote
, “
Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall
,”
Int. J. Heat Fluid Flow
38
,
1
12
(
2012
).
19.
T. I.
Józsa
, “
Analytical solutions of incompressible laminar channel and pipe flows driven by in-plane wall oscillations
,”
Phys. Fluids
31
,
083605
(
2019
).
20.
P. S.
Negi
,
M.
Mishra
, and
M.
Skote
, “
DNS of a single low-speed streak subject to spanwise wall oscillations
,”
Flow, Turbul. Combust.
94
,
795
816
(
2015
).
21.
O.
Blesbois
,
S. I.
Chernyshenko
,
E.
Touber
, and
M. A.
Leschziner
, “
Pattern prediction by linear analysis of turbulent flow with drag reduction by wall oscillation
,”
J. Fluid Mech.
724
,
607
641
(
2013
).
22.
P.
Ricco
,
C.
Ottonelli
,
Y.
Hasegawa
, and
M. I.
Quadrio
, “
Changes in turbulent dissipation in a channel flow with oscillating walls
,”
J. Fluid Mech.
700
,
77
104
(
2012
).
23.
D.
Gatti
,
A.
Cimarelli
,
Y.
Hasegawa
,
B.
Frohnapfel
, and
M.
Quadrio
, “
Global energy fluxes in turbulent channels with flow control
,”
J. Fluid Mech.
857
,
345
373
(
2018
).
24.
E.
Touber
and
M. A.
Leschziner
, “
Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms
,”
J. Fluid Mech.
693
,
150
200
(
2012
).
25.
L.
Agostini
,
E.
Touber
, and
M. A.
Leschziner
, “
Spanwise oscillatory wall motion in channel flow: Drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at Reτ = 1000
,”
J. Fluid Mech.
743
,
606
635
(
2014
).
26.
M. J. P.
Hack
and
T. A.
Zaki
, “
Modal and non-modal stability of boundary layers forced by spanwise wall oscillations
,”
J. Fluid Mech.
778
,
389
427
(
2015
).
27.
M. J. P.
Hack
and
T. A.
Zaki
, “
The influence of harmonic wall motion on transitional boundary layers
,”
J. Fluid Mech.
760
,
63
94
(
2014
).
28.
J.
Yao
,
X.
Chen
, and
F.
Hussain
, “
Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows
,”
Phys. Fluids
31
,
085108
(
2019
).
29.
L.
Agostini
and
M.
Leschziner
, “
The impact of footprints of large-scale outer structures on the near-wall layer in the presence of drag-reducing spanwise wall motion
,”
Flow, Turbul. Combust.
100
,
1037
1061
(
2018
).
30.
J. S.
Kim
,
J.
Hwang
,
M.
Yoon
,
J.
Ahn
, and
H. J.
Sung
, “
Influence of a large-eddy breakup device on the frictional drag in a turbulent boundary layer
,”
Phys. Fluids
29
,
065103
(
2017
).
31.
D.
Gatti
and
M.
Quadrio
, “
Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing
,”
J. Fluid Mech.
802
,
553
582
(
2016
).
32.
G.
Karniadakis
and
K.-S.
Choi
, “
Mechanisms on transverse motions in turbulent wall flows
,”
Annu. Rev. Fluid Mech.
35
,
45
62
(
2003
).
33.
L.
Agostini
and
M.
Leschziner
, “
Predicting the response of small-scale near-wall turbulence to large-scale outer motions
,”
Phys. Fluids
28
,
015107
(
2016
).
34.
A.
Yakeno
,
Y.
Hasegawa
, and
N.
Kasagi
, “
Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation
,”
Phys. Fluids
26
,
085109
(
2014
).
35.
L.
Agostini
,
E.
Touber
, and
M. A.
Leschziner
, “
The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion
,”
Int. J. Heat Fluid Flow
51
,
3
15
(
2015
).
36.
J. I.
Ibrahim
,
Q.
Yang
,
P.
Doohan
, and
Y.
Hwang
, “
Phase-space dynamics of opposition control in wall-bounded turbulent flows
,”
J. Fluid Mech.
861
,
29
54
(
2019
).
37.
J.
Jiménez
, “
Coherent structures in wall-bounded turbulence
,”
J. Fluid Mech.
842
,
P1
(
2018
).
38.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
39.
P. H.
Mortensen
,
H. I.
Andersson
,
J. J. J.
Gillissen
, and
B. J.
Boersma
, “
Dynamics of prolate ellipsoidal particles in a turbulent channel flow
,”
Phys. Fluids
20
,
093302
(
2008
).
40.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
41.
M.
Quadrio
and
P.
Ricco
, “
Critical assessment of turbulent drag reduction through spanwise wall oscillations
,”
J. Fluid Mech.
521
,
251
271
(
2004
).
42.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
(
Pearson Education
,
2007
).
43.
P.
Plehiers
, “
Computational fluid dynamics of turbulent flows: Direct numerical simulation and large eddy simulation
,” M.S. thesis,
Ghent University
,
2016
.
44.
R.
Dean
, “
Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow
,”
J. Fluids Eng.
100
,
215
223
(
1978
).
45.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
46.
N. N.
Mansour
,
J.
Kim
, and
P.
Moin
, “
Reynolds-stress and dissipation-rate budgets in a turbulent channel flow
,”
J. Fluid Mech.
194
,
15
44
(
1988
).
47.
J.
Jiménez
and
P.
Moin
, “
The minimal flow unit in near-wall turbulence
,”
J. Fluid Mech.
225
,
213
240
(
1991
).
48.
A. V.
Johansson
and
P. H.
Alfredsson
, “
On the structure of turbulent channel flow
,”
J. Fluid Mech.
122
,
295
314
(
1982
).
49.
J.
Jeong
,
F.
Hussain
,
W.
Schoppa
, and
J.
Kim
, “
Coherent structures near the wall in a turbulent channel flow
,”
J. Fluid Mech.
332
,
185
214
(
1997
).
50.
M. R.
Jovanović
, “
Turbulence suppression in channel flows by small amplitude transverse wall oscillations
,”
Phys. Fluids
20
,
014101
(
2008
).
51.
K.-S.
Choi
,
J.-R.
DeBisschop
, and
B. R.
Clayton
, “
Turbulent boundary-layer control by means of spanwise-wall oscillation
,”
AIAA J.
36
,
1157
1163
(
1998
).
52.
J.-I.
Choi
,
C.-X.
Xu
, and
H. J.
Sung
, “
Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows
,”
AIAA J.
40
,
842
850
(
2002
).
53.
K.-S.
Choi
and
B. R.
Clayton
, “
The mechanism of turbulent drag reduction with wall oscillation
,”
Int. J. Heat Fluid Flow
22
,
1
9
(
2001
).
54.
P. D.
Hicks
and
P.
Ricco
, “
Laminar streak growth above a spanwise oscillating wall
,”
J. Fluid Mech.
768
,
348
374
(
2015
).
55.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
110
(
1994
).
56.
C.-X.
Xu
and
W.-X.
Huang
, “
Transient response of Reynolds stress transport to spanwise wall oscillation in a turbulent channel flow
,”
Phys. Fluids
17
,
018101
(
2005
).
57.
L. A.
Schiavo
,
W. R.
Wolf
, and
J. L. F.
Azevedo
, “
Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation
,”
Phys. Fluids
29
,
115108
(
2017
).
58.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
Predictive model for wall-bounded turbulent flow
,”
Science
329
,
193
196
(
2010
).
59.
A.
Lozano-Durán
and
J.
Jiménez
, “
Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades
,”
J. Fluid Mech.
759
,
432
471
(
2014
).
60.
D.
Zhou
and
K. S.
Ball
, “
Turbulent drag reduction by spanwise wall oscillations
,”
Int. J. Eng., Trans. A
21
,
85
104
(
2008
).
61.
M.
Quadrio
and
P.
Ricco
, “
Wall-oscillation conditions for drag reduction in turbulent channel flow
,”
Int. J. Heat Fluid Flow
29
,
891
902
(
2008
).
62.
M.
Quadrio
and
P.
Ricco
, “
Initial response of a turbulent channel flow to spanwise oscillation of the walls
,”
J. Turbul.
4
,
1
(
2003
).
63.
P. H.
Alfredsson
and
A. V.
Johansson
, “
On the detection of turbulence-generating events
,”
J. Fluid Mech.
139
,
325
345
(
1984
).
64.
G. L.
Brown
,
M.
Lee
, and
R. D.
Moser
,
Vorticity Transport: The Transfer of Viscous Stress to Reynolds Stress in Turbulent Channel Flow
(
TSFP Digital Library Online, Begel House, Inc.
,
2015
).
65.
J.
Xu
,
S.
Dong
,
M. R.
Maxey
, and
G. E.
Karniadakis
, “
Turbulent drag reduction by constant near-wall forcing
,”
J. Fluid Mech.
582
,
79
101
(
2007
).
You do not currently have access to this content.