The drop impact on a solid surface is studied in the context of complex fluids that exhibit viscoplastic, viscoelastic, and thixotropic behavior. The effects of rheology and surface tension are investigated for a range of corresponding dimensionless numbers associated with each phenomenon. Two usual quantities are employed to understand the drop dynamics, namely, the maximum spreading diameter and the time the drop remains in contact with the solid. Another result is the drop shape evolution, captured by displaying selected instants. The first part of the work is dedicated to examine the influence of capillary effects for more real fluids, in the present case, solutions of Carbopol, kaolin, and bentonite whose mechanical properties are taken from experimental measurements reported in the literature. In the second part, we conduct parametric studies varying the dimensionless numbers that govern the problem. We have shown that the influence of surface tension in yield stress materials is less significant and can be negligible when real parameters are input in the model. On the other hand, Newtonian and viscoelastic fluids are more susceptible to surface tension effects. This quantity tends to decrease maximum spreading diameter and decrease contact time due to its resistance in the spreading stage. While inertia, elasticity, and plastic effects favor the drop to spread and to increase its contact time with the solid substrate, a more thixotropic behavior leads to the opposite trend.

1.
A. M.
Worthington
, in
A Study of Splashes
, edited by Green (
Longmass
,
1908
).
2.
S.
Cheng
and
V.
Bertola
, “
Morphology of viscoplastic drop impact on viscoplastic surfaces
,”
Soft Matter
13
,
711
719
(
2017
).
3.
M.
Jalaal
,
D.
Kemper
, and
D.
Lohse
, “
Viscoplastic water entry
,”
J. Fluid Mech.
864
,
596
613
(
2019
).
4.
B. C.
Blackwell
,
M. E.
Deetjen
,
J. E.
Gaudio
, and
R. H.
Ewoldt
, “
Sticking and splashing in yield-stress fluid drop impacts on coated surfaces
,”
Phys. Fluids
27
,
043101
(
2015
).
5.
X.
Tang
,
A.
Saha
,
C. K.
Law
, and
C.
Sun
, “
Bouncing drop on liquid film: Dynamics of interfacial gas layer
,”
Phys. Fluids
31
,
013304
(
2019
).
6.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
7.
V.
Bertola
and
M.
Marengo
,
Drops and Bubbles in Contact with Solid Surfaces,
Volume: Single Drop Impacts of Complex Fluids: A Review (
Koninklijke Brill NV
,
Leiden
,
2012
).
8.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
659
(
1996
).
9.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
10.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
John Wiley & Sons
,
New York
,
1987
), Vol. 1.
11.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
863
(
1985
).
12.
S.
Sikalo
,
H. D.
Wilhelm
,
I. V.
Roisman
,
S.
Jakirlic
, and
C.
Tropea
, “
Dynamic contact angle of spreading droplets: Experiments and simulations
,”
Phys. Fluids
17
,
062103
(
2005
).
13.
I. S.
Bayer
and
C. M.
Megaridis
, “
Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics
,”
J. Fluid Mech.
558
,
415
449
(
2006
).
14.
D.
Vadillo
,
A.
Soucemarianadin
,
C.
Delattre
, and
D.
Roux
, “
Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces
,”
Phys. Fluids
21
,
122002
(
2009
).
15.
J. C.
Bird
,
R.
Dhiman
,
H.-M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
388
(
2013
).
16.
Y.
Liu
,
M.
Andrew
,
J.
Li
,
J. M.
Yeomans
, and
Z.
Wang
, “
Symmetry breaking in drop bouncing on curved surfaces
,”
Nat. Commun.
6
,
10034
(
2015
).
17.
X.
Liu
,
X.
Zhang
, and
J.
Min
, “
Maximum spreading of droplets impacting spherical surfaces
,”
Phys. Fluids
31
,
092102
(
2019
).
18.
H.
Zhang
,
X.
Yi
,
Y.
Du
,
R.
Zhang
,
X.
Zhang
,
F.
He
,
F.
Niu
, and
P.
Hao
, “
Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces
,”
Phys. Fluids
31
,
032104
(
2019
).
19.
D. J.
Bouchard
and
S.
Chandra
, “
Droplet impact and flow into a gap between parallel plates
,”
Phys. Fluids
31
,
062104
(
2019
).
20.
J.
Philippi
,
P.-Y.
Lagrée
, and
A.
Antkowiak
, “
Drop impact on a solid surface: Short-time self similarity
,”
J. Fluid Mech.
795
,
96
135
(
2016
).
21.
Z.
Jian
,
C.
Josserand
,
S.
Popinet
,
P.
Ray
, and
S.
Zaleski
, “
Two mechanisms of droplet splashing on a solid substrate
,”
J. Fluid Mech.
835
,
1065
1086
(
2018
).
22.
S. M.
An
and
S. Y.
Lee
, “
Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces
,”
Exp. Therm. Fluid Sci.
37
,
37
45
(
2012
).
23.
S. M.
An
and
S. Y.
Lee
, “
Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces
,”
Exp. Therm. Fluid Sci.
38
,
140
148
(
2012
).
24.
G.
German
and
V.
Bertola
, “
Impact of shear-thinning and yield-stress drops on solid substrates
,”
J. Phys.: Condens. Matter
21
,
375111
(
2009
).
25.
M.
Smith
and
V.
Bertola
, “
Effect of polymer additives on the wetting of impacting droplets
,”
Phys. Rev. Lett.
104
,
154502
(
2010
).
26.
V.
Bergeron
,
D.
Bonn
,
J. Y.
Martin
, and
L.
Vovelle
, “
Controlling droplet deposition with polymer additives
,”
Nature
405
,
772
775
(
2000
).
27.
D.
Bartolo
,
A.
Boudaoud
,
G.
Narcy
, and
D.
Bonn
, “
Dynamics of non-Newtonian droplets
,”
Phys. Rev. Lett.
99
,
174502
(
2007
).
28.
S.
Chen
and
V.
Bertola
, “
The impact of viscoplastic drops on a heated surface in the Leidenfrost regime
,”
Soft Matter
12
,
7624
7631
(
2016
).
29.
A.
Rozhkov
,
B.
Prunet-Foch
, and
M.
Vignes-Adler
, “
Impact of drops of polymer solutions on small targets
,”
Phys. Fluids
15
,
2006
2019
(
2003
).
30.
D.
Izbassarov
and
M.
Muradoglu
, “
Effects of viscoelasticity on drop impact and spreading on a solid surface
,”
Phys. Rev. Fluids
1
,
023302
(
2016
).
31.
S.
Nigen
, “
Experimental investigation of the impact of an (apparent) yield-stress material
,”
Atomization Sprays
15
,
103
118
(
2005
).
32.
L.
Luu
and
Y.
Forterre
, “
Drop impact of yield-stress fluids
,”
J. Fluid Mech.
632
,
301
327
(
2009
).
33.
C. M.
Oishi
,
F. P.
Martins
,
M. F.
Tome
, and
M. A.
Alves
, “
Numerical simulation of drop impact and jet buckling problems using the eXtended Pom-Pom model
,”
J. Non-Newtonian Fluid Mech.
169-170
,
91
103
(
2012
).
34.
E.
Kim
and
J.
Baek
, “
Numerical study of the parameters governing the impact dynamics of yield-stress fluid droplets on a solid surface
,”
J. Non-Newtonian Fluid Mech.
173-174
,
62
71
(
2012
).
35.
S.
Noroozi
,
S.
Tavangar
, and
S.
Hashemabadi
, “
CFD simulation of wall impingement of tear shape viscoplastic drops utilizing OpenFOAM
,”
Appl. Rheol.
23
,
55519
(
2013
).
36.
T.
Ye
,
D.
Pan
,
C.
Huang
, and
M.
Liu
, “
Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications
,”
Phys. Fluids
31
,
011301
(
2019
).
37.
C. M.
Oishi
,
R. L.
Thompson
, and
F. P.
Martins
, “
Normal and oblique drop impact of yield stress fluids with thixotropic effects
,”
J. Fluid Mech.
876
,
642
679
(
2019
).
38.
C. M.
Oishi
,
R. L.
Thompson
, and
F. P.
Martins
, “
Transient motions of elasto-viscoplastic thixotropic materials subjected to an imposed stress field and to stress-based free-surface boundary conditions
,”
Int. J. Eng. Sci.
109
,
165
201
(
2016
).
39.
C. M.
Oishi
,
F. P.
Martins
, and
R. L.
Thompson
, “
The “avalanche effect” of an elasto-viscoplastic thixotropic material on an inclined plane
,”
J. Non-Newtonian Fluid Mech.
247
,
165
201
(
2017
).
40.
P.
Saramito
, “
A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model
,”
J. Non-Newtonian Fluid Mech.
158
,
154
161
(
2009
).
41.
P. R.
de Souza Mendes
, “
Modeling the thixotropic behavior of structured fluids
,”
J. Non-Newtonian Fluid Mech.
164
,
66
75
(
2009
).
42.
P. R.
de Souza Mendes
, “
Thixotropic elasto-viscoplastic model for structured fluids
,”
Soft Matter
7
,
2471
2483
(
2011
).
43.
P. R.
de Souza Mendes
and
R. L.
Thompson
, “
A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent-yield-stress fluids
,”
Rheol. Acta
52
,
673
694
(
2013
).
44.
P. R.
de Souza Mendes
and
R. L.
Thompson
, “
A critical overview of elasto-viscoplastic thixotropic modeling
,”
J. Non-Newtonian Fluid Mech.
187-188
,
8
15
(
2012
).
45.
H. A.
Barnes
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
46.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Surface phenomena: Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
47.
N.
Laan
,
K. G.
de Bruin
,
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Maximum diameter of impacting liquid droplets
,”
Phys. Rev. Appl.
2
,
044018
(
2014
).
48.
S.
Yun
, “
Bouncing of an ellipsoidal drop on a superhydrophobic surface
,”
Sci. Rep.
7
,
17699
(
2017
).
49.
K.
Regulagadda
,
S.
Bakshi
, and
S.
Das
, “
Triggering of flow asymmetry by anisotropic deflection of lamella during the impact of a drop onto superhydrophobic surfaces
,”
Phys. Fluids
30
,
072105
(
2018
).
50.
R. L.
Thompson
and
E. J.
Soares
, “
Viscoplastic dimensionless numbers
,”
J. Non-Newtonian Fluid Mech.
238
,
57
64
(
2016
).
51.
S.
McKee
,
M. F.
Tomé
,
V. G.
Ferreira
,
J. A.
Cuminato
,
A.
Castelo
,
F. S.
Sousa
, and
N.
Mangiavacchi
, “
The MAC method
,”
Comput. Fluids
37
,
907
930
(
2008
).
52.
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
,
Direct Numerical Simulations of Gas-Liquid Multiphase Flows
(
Cambridge University Press
,
2011
).
53.
N.
Mangiavacchi
,
A.
Castelo
,
M. F.
Tomé
,
J. A.
Cuminato
,
M.
de Oliveira
, and
S.
McKee
, “
An effective implementation of surface tension using the marker and cell method for axisymmetric and planar flows
,”
SIAM J. Sci. Comput.
26
,
1340
1368
(
2005
).
54.
J. A.
Cuminato
,
C. M.
Oishi
, and
R. A.
Figueiredo
, “
Implicit methods for simulating low Reynolds number free surface flows: Improvements on the MAC-type methods
,” in
The Impact of Applications on Mathematics
, edited by
M.
Wakayama
,
R. S.
Andersen
,
J.
Chen
,
Y.
Fukumoto
,
R.
Mckibbin
,
K.
Polthier
,
T.
Takagi
, and
K.-C.
Toh
(
Springer, Japan
,
2014
).
55.
J.
Boujlel
and
P.
Coussot
, “
Measuring the surface tension of yield stress fluids
,”
Soft Matter
9
,
5898
5908
(
2013
).

Supplementary Material

You do not currently have access to this content.