The mechanical and thermal behavior of nonisothermal fiber-filled composites in a three-dimensional printing process is studied numerically with a smoothed particle hydrodynamics method. A classical microstructure-based fiber suspension model with a temperature-dependent power-law viscosity model and a microstructure constitutive model is implemented to model a fiber-filled system. The fiber microstructure is described by a second-order tensor A2 which describes the spatially averaged orientation of the fibers. Two benchmark cases are presented to validate the reliability of the present implementation. Three typical printing modes are tested to assess the characteristics of printed layers. The results show that the printed layer becomes thicker, and the fiber alignment in the printing direction is enhanced in the bottom half of the layer and reduced in the top half due to the existence of nonisothermal effects in the process. The variation in fiber orientation becomes larger with increasing fiber concentration. By increasing the Peclet number, the deposited layer thickness reduces and the fiber alignment in the printing direction is enhanced in the top half and reduced in the bottom half. The evolution of the orientation and the velocity gradient tensors projected along several streamlines are discussed to illustrate the effects of the temperature and different printing modes on the deposited layer.

1.
C. Y.
Liaw
and
M.
Guvendiren
, “
Current and emerging applications of 3D printing in medicine
,”
Biofabrication
9
,
024102
(
2017
).
2.
B. I.
Lyons
, “
Method of manufacturing co-molded inserts
,” U.S. patent 8,228,028 (
26 February 2013
).
3.
A. M.
Mozeika
,
A.
Adler
,
F.
Yaman-Sirin
, and
J.
Beal
, “
Robotic fabricator
,” U.S. patent 13/530,664 (
17 January 2013
).
4.
E.
Bertevas
,
J.
Férec
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process
,”
Phys. Fluids
30
(
10
),
103103
(
2018
).
5.
W.
Zhong
,
F.
Li
,
Z.
Zhang
,
L.
Song
, and
Z.
Li
, “
Short fiber reinforced composites for fused deposition modeling
,”
Mater. Sci. Eng.: A
301
(
2
),
125
130
(
2001
).
6.
H. L.
Tekinalp
,
V.
Kunc
,
G. M.
Velez-Garcia
,
C. E.
Duty
,
L. J.
Love
,
A. K.
Naskar
,
C. A.
Blue
, and
S.
Ozcan
, “
Highly oriented carbon fiber polymer composites via additive manufacturing
,”
Compos. Sci. Technol.
105
,
144
150
(
2014
).
7.
F.
Ning
,
W.
Cong
,
J.
Qiu
,
J.
Wei
, and
S.
Wang
, “
Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling
,”
Composites, Part B
80
,
369
378
(
2015
).
8.
F.
Ning
,
W.
Cong
,
Y.
Hu
, and
H.
Wang
, “
Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties
,”
J. Compos. Mater.
51
(
4
),
451
462
(
2017
).
9.
J.
Lin
,
L.
Zhang
, and
W.
Zhang
, “
Rheological behavior of fiber suspensions in a turbulent channel flow
,”
J. Colloid Interface Sci.
296
(
2
),
721
728
(
2006
).
10.
J.
Lin
,
W.
Zhang
, and
Z.
Yu
, “
Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows
,”
J. Aerosol Sci.
35
(
1
),
63
82
(
2004
).
11.
J.
Lin
,
X.
Shi
, and
Z.
Yu
, “
The motion of fibers in an evolving mixing layer
,”
Int. J. Multiphase Flow
29
(
8
),
1355
1372
(
2003
).
12.
B. G.
Compton
and
J. A.
Lewis
, “
3D-Printing of lightweight cellular composites
,”
Adv. Mater.
26
(
34
),
5930
5935
(
2014
).
13.
J.
Lin
,
Y.
Xia
, and
X.
Ku
, “
Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow
,”
Int. J. Heat Mass Transfer
93
(
1
),
57
66
(
2016
).
14.
J.
Nixon
,
B.
Dryer
,
D.
Chiu
,
I.
Lempert
, and
D. I.
Bigio
, “
Three parameter analysis of fiber orientation in fused deposition modeling geometries
,” in
72nd Annual Technical Conference of the Society of Plastics Engineers Plastics Conference (ANTEC)
(
Society of Plastics Engineers Automotive Composites Conference
,
2014
), Vol. 2, No. 2, pp.
985
995
.
15.
F.
Folgar
and
C. L.
Tucker
, “
Orientation behavior of fibers in concentrated suspensions
,”
J. Reinf. Plast. Compos.
3
,
98
119
(
1984
).
16.
B. P.
Heller
,
D. E.
Smith
, and
D. A.
Jack
, “
The effects of extrudate swell, nozzle shape, and nozzle convergence zone on fiber orientation in fused deposition modeling
,” in
American Society for Composites 30th Technical Conference
,
2015
.
17.
B. P.
Heller
,
D. E.
Smith
, and
D. A.
Jack
, “
Effects of extrudate swell and nozzle geometry on fiber orientation in fused filament fabrication nozzle flow
,”
Addit. Manuf.
12
,
252
264
(
2016
).
18.
B. P.
Heller
,
D. E.
Smith
, and
D. A.
Jack
, “
Computing mechanical properties from orientation tensor for fiber filled polymers in axisymmetric flow and planar deposition flow
,” in
SPE ACCE Conference
(
Society of Plastics Engineers Automotive Composites Conference
,
2016
), pp.
1
13
.
19.
B. P.
Heller
,
D. E.
Smith
, and
D. A.
Jack
, “
Planar deposition flow modeling of fiber filled composites in large area additive manufacturing
,”
Addit. Manuf.
25
,
227
238
(
2019
).
20.
S. G.
Advani
and
C. L.
Tucker
, “
The use of tensors to describe and predict fiber orientation in short fiber composites
,”
J. Rheol.
31
,
751
784
(
1987
).
21.
S.
Montgomery-Smith
,
D.
Jack
, and
D. E.
Smith
, “
The fast exact closure for Jeffery’s equation with diffusion
,”
J. Non-Newtonian Fluid Mech.
166
,
343
353
(
2011
).
22.
T. M.
Wang
,
J. T.
Xi
, and
Y.
Jin
, “
A model research for prototype warp deformation in the FDM process
,”
Int. J. Adv. Manuf. Technol.
33
,
1087
1096
(
2007
).
23.
X.
Liu
,
S.
Li
,
Z.
Liu
,
X.
Zheng
,
X.
Chen
, and
Z.
Wang
, “
An investigation on distortion of PLA thin-plate part in the FDM process
,”
Int. J. Adv. Manuf. Technol.
79
,
1117
1126
(
2015
).
24.
Y.
Zhang
and
Y. K.
Chou
, “
3D FEA simulations of fused deposition modeling process
,” in
ASME International Manufacturing Science and Engineering
(
ASME
,
2006
), pp.
1
8
.
25.
T.
Ye
,
D.
Pan
,
C.
Huang
, and
M.
Liu
, “
Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications
,”
Phys. Fluids
31
(
1
),
011301
(
2019
).
26.
L. B.
Lucy
, “
A numerical approach to the testing of the fission hypothesis
,”
Astron. J.
82
,
1013
1024
(
1977
).
27.
R. A.
Gingold
and
J. J.
Monaghan
, “
Smoothed particle hydrodynamics theory and application to non-spherical stars
,”
Mon. Not. R. Astron. Soc.
181
,
375
389
(
1977
).
28.
T.
Tran-Duc
,
N.
Phan-Thien
, and
B. C.
Khoo
, “
A smoothed particle hydrodynamics (SPH) study of sediment dispersion on the seafloor
,”
Phys. Fluids
29
(
8
),
083302
(
2017
).
29.
T.
Tran-Duc
,
N.
Phan-Thien
, and
B. C.
Khoo
, “
A smoothed particle hydrodynamics (SPH) study on polydisperse sediment from technical activities on seabed
,”
Phys. Fluids
30
(
2
),
023302
(
2018
).
30.
T.
Tran-Duc
,
N.
Phan-Thien
, and
B. C.
Khoo
, “
A three-dimensional smoothed particle hydrodynamics dispersion simulation of polydispersed sediment on the seafloor using a message passing interface algorithm
,”
Phys. Fluids
31
(
4
),
043301
(
2019
).
31.
E.
Bertevas
,
T.
Tran-Duc
,
K.
Le-Cao
,
N.
Phan-Thien
, and
B. C.
Khoo
, “
A smoothed particle hydrodynamics (SPH) formulation of a two-phase mixture model and its application to turbulent sediment transport
,”
Phys. Fluids
31
(
10
),
103303
(
2019
).
32.
P. W.
Cleary
and
J.
Monaghan
, “
Conduction modeling using smoothed particle hydrodynamics
,”
J. Comput. Phys.
148
,
227
264
(
1999
).
33.
A.
Leroy
,
D.
Violeau
,
M.
Ferrand
, and
A.
Joly
, “
Buoyancy modeling with incompressible SPH for laminar and turbulent flow
,”
Int. J. Numer. Methods Fluids
78
,
455
474
(
2015
).
34.
A.
Farrokhpanah
,
M.
Bussmann
, and
J.
Mostaghimi
, “
New smoothed particle hydrodynamics (SPH) formulation for modeling heat conduction with solidification and melting
,”
Numer. Heat Transfer, Part B
71
,
299
312
(
2016
).
35.
J.
Ren
,
J.
Ouyang
, and
T.
Jiang
, “
An improved particle method for simulation of the non-isothermal viscoelastic fluid mold filling process
,”
Int. J. Heat Mass Transfer
85
,
543
560
(
2015
).
36.
J.
Férec
,
E.
Bertevas
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
Thermal or electrical bulk properties of rod-filled composites
,”
Int. J. Eng. Sci.
133
,
219
230
(
2018
).
37.
J.
Férec
,
E.
Bertevas
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
The effect of shear-thinning behaviour on rod orientation in filled fluids
,”
J. Fluid Mech.
798
,
350
370
(
2016
).
38.
J.
Férec
,
E.
Bertevas
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
Steady-shear rheological properties for suspensions of axisymmetric particles in second-order fluids
,”
J. Non-Newtonian Fluid Mech.
239
,
62
72
(
2017
).
39.
J.
Férec
,
E.
Bertevas
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
A rheological constitutive model for semiconcentrated rod suspensions in Bingham fluids
,”
Phys. Fluids
29
,
073103
(
2017
).
40.
S. G.
Advani
and
C. L.
Tucker
, “
Closure approximations for 3-dimensional structure tensors
,”
J. Rheol.
34
,
367
386
(
1990
).
41.
N.
Phan-Thien
,
X. J.
Fan
,
R. I.
Tanner
, and
R.
Zheng
, “
Folgar-Tucker constant for a fiber suspension in a Newtonian fluid
,”
J. Non-Newtonian Fluid Mech.
103
,
251
260
(
2002
).
42.
D. H.
Chung
and
T. H.
Kwon
, “
Fiber orientation in the processing of polymer composites
,”
Korea-Aust. Rheol. J.
14
,
175
188
(
2002
).
43.
N.
Phan-Thien
and
A.
Graham
, “
A new constitutive model for fiber suspensions-flow past a sphere
,”
Rheol. Acta
30
,
44
57
(
1991
).
44.
J.
Peng
,
T. L.
Lin
, and
P.
Calvert
, “
Orientation effects in free formed short-fiber composites
,”
Composites, Part A
30
(
2
),
133
138
(
1999
).
45.
G.
Griffini
,
M.
Invernizzi
,
M.
Levi
,
G.
Natale
,
G.
Postiglione
, and
S.
Turri
, “
3D-printable CFR polymer composites with dual-cure sequential IPNs
,”
Polymer
91
,
174
179
(
2016
).
46.
J. J.
Martin
,
B. E.
Fiore
, and
R. M.
Erb
, “
Designing bioinspired composite reinforcement architectures via 3D magnetic printing
,”
Nat. Commun.
6
,
8641
(
2015
).
47.
Q.
Duan
and
X.
Li
, “
An ALE based iterative CBS algorithm for non-isothermal non-Newtonian flow with adaptive coupled finite element and meshfree method
,”
Comput. Methods Appl. Mech. Eng.
196
,
4911
4933
(
2007
).
48.
G. R.
Liu
and
M. B.
Liu
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
(
World Scientific
,
Singapore
,
2003
).
49.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
(
1
),
214
226
(
1997
).
50.
M.
Antuono
,
A.
Colagrossi
, and
S.
Marrone
, “
Numerical diffusive terms in weakly-compressible SPH schemes
,”
Comput. Phys. Commun.
183
,
2570
2580
(
2012
).
51.
F.
Jiang
,
M. S.
Oliveira
, and
A. C.
Sousa
, “
SPH simulation of low Reynolds number planar shear flow and heat convection
,”
Materialwiss. Werkstofftech.
36
(
10
),
613
619
(
2005
).
52.
S.
Adami
,
X. Y.
Hu
, and
N. A.
Adams
, “
A generalized wall boundary condition for smoothed particle hydrodynamics
,”
J. Comput. Phys.
231
(
21
),
7057
7075
(
2012
).
53.
A.
El Moumen
,
M.
Tarfaoui
, and
K.
Lafdi
, “
Modeling of the temperature and residual stress fields during 3D printing of polymer composites
,”
Int. J. Adv. Manuf. Technol.
104
,
1661
(
2019
).
54.
Z.
Wang
and
D. E.
Smith
, “
Rheology effects on predicted fiber orientation and elastic properties in large scale polymer composite additive manufacturing
,”
J. Compos. Sci.
2
,
10
(
2018
).
55.
M.
Pyda
,
R. C.
Bopp
, and
B.
Wunderlich
, “
Heat capacity of poly (lactic acid)
,”
J. Chem. Thermodyn.
36
(
9
),
731
742
(
2004
).
You do not currently have access to this content.