We investigate the effect of continuous-wave laser irradiation on the cavity evolution behind a sphere in water entry. By tuning the irradiation time, the surface temperature (Ts) of the sphere before the impact varies in 105–355 °C. We change the radius and impact velocity of the sphere, by which both the shallow and deep seals are considered. Compared to the reference case (the sphere was roughened to have a cavity initially), we find that the cavity expands or shrinks depending on Ts. Overall, for all cases, the cavity bubble expands to the maximum size and shrinks steeply with increasing Ts. At higher Ts, the cavity is destroyed significantly, even smaller than the reference case. However, the detailed interaction between the cavity and laser-induced cavitation bubbles is quite different. In a shallow-seal case, nucleate boiling occurs on the sphere surface and vapor bubbles merge into the cavity, resulting in the expansion of the cavity. At a highly subcooled condition, on the other hand, the vapor bubble collapses into microbubbles as soon as it contacts water, resulting in the cavity reduction. As the impact speed increases (for a deep-seal condition), the flux of entrained air becomes dominant and the stage of cavity expansion is quite narrow. As Ts increases, the heated cavity collapses into microbubbles and almost 90% is destroyed. Finally, we investigate the effects of modified cavity on hydrodynamic forces on the sphere. While the temporal variation of hydrodynamic forces is complex, the drag reduction over 40% is achieved.

1.
Akhatov
,
I.
,
Vakhitova
,
N.
,
Topolnikov
,
A.
,
Zakirov
,
K.
,
Wolfrum
,
B.
,
Kurz
,
T.
,
Lindau
,
O.
,
Mettin
,
R.
, and
Lauterborn
,
W.
, “
Dynamics of laser-induced cavitation bubbles
,”
Exp. Therm. Fluid Sci.
26
,
731
737
(
2002
).
2.
Aristoff
,
J. M.
and
Bush
,
J. W. M.
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
3.
Baffou
,
G.
,
Polleux
,
J.
,
Rigneault
,
H.
, and
Monneret
,
S.
, “
Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination
,”
J. Phys. Chem. C
118
,
4890
4898
(
2014
).
4.
Ballard
,
D. H.
, “
Generalizing the Hough transform to detect arbitrary shapes
,”
Pattern Recognit.
13
,
111
122
(
1981
).
5.
Bergles
,
A. E.
and
Rohsenow
,
W. M.
, “
The determination of forced-convection surface-boiling heat transfer
,”
J. Heat Transfer
86
,
365
372
(
1964
).
6.
Brennen
,
C. E.
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
1995
).
7.
Dix
,
D.
and
Orozco
,
J.
, “
Film boiling heat transfer from a sphere in natural and forced convection of Freon-113
,”
Exp. Heat Transfer
3
,
129
148
(
1990
).
8.
Dong
,
R. G.
, “
Effective mass and damping of submerged structures
,” Technical Report UCRL-52342,
Lawrence Livermore Laboratory
,
1978
.
9.
Ducluax
,
V.
,
Caillé
,
F.
,
Duez
,
C.
,
Ybert
,
C.
,
Bocquet
,
L.
, and
Clanet
,
C.
, “
Dynamics of transient cavities
,”
J. Fluid Mech.
591
,
1
19
(
2007
).
10.
Duez
,
C.
,
Vbert
,
C.
,
Clanet
,
C.
, and
Bocquet
,
L.
, “
Making a splash with water repellency
,”
Nat. Phys.
3
,
180
183
(
2007
).
11.
Gondret
,
P.
,
Lance
,
M.
, and
Petit
,
L.
, “
Bouncing motion of spherical particles in fluids
,”
Phys. Fluids
14
,
643
652
(
2002
).
12.
Hou
,
L.
,
Yorulmaz
,
M.
,
Verhart
,
N. R.
, and
Orrit
,
M.
, “
Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere
,”
New J. Phys.
17
,
013050
(
2015
).
13.
Inada
,
S.
,
Miyasaka
,
Y.
,
Sakumoto
,
S.
, and
Chandratilleke
,
G. R.
, “
Liquid-solid contact state in subcooled pool transition boiling system
,”
J. Heat Transfer
108
,
219
221
(
1986
).
14.
Jetly
,
A.
,
Vakarelski
,
I. U.
,
Yang
,
Z.
, and
Thoroddsen
,
S. T.
, “
Giant drag reduction on Leidenfrost spheres evaluated from extended free-fall trajectories
,”
Exp. Heat Transfer
102
,
181
188
(
2019
).
15.
Kenning
,
D. B.
, “
Optical studies of boiling heat transfer: Insights and limitations
,”
Int. J. Heat Fluid Flow
25
,
209
222
(
2004
).
16.
Kim
,
N.
and
Park
,
H.
, “
Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions
,”
J. Fluid Mech.
863
,
757
788
(
2019
).
17.
Kim
,
N.
,
Park
,
H.
, and
Do
,
H.
, “
Evolution of cavitation bubble in tap water by continuous-wave laser focused on a metallic surface
,”
Langmuir
35
,
3308
3318
(
2019
).
18.
Lam
,
J.
,
Lombard
,
J.
,
Dujardin
,
C.
,
Ledoux
,
G.
,
Merabia
,
S.
, and
Amans
,
D.
, “
Dynamical study of bubble expansion following laser ablation in liquids
,”
Appl. Phys. Lett.
108
,
074104
(
2016
).
19.
Li
,
J. C.
,
Wei
,
Y. J.
,
Wang
,
C.
, and
Xia
,
W. X.
, “
Cavity formation during water entry of heated spheres
,”
Chin. Phys. B
27
,
094703
(
2018
).
20.
Liu
,
J.
,
Feng
,
X.
, and
Wang
,
G.
, “
Buoyant force and sinking conditions of a hydrophobic thin rod floating on water
,”
Phys. Rev. E
76
,
066103
(
2007
).
21.
Mansoor
,
M. M.
,
Marston
,
J. O.
,
Vakarelski
,
I. U.
, and
Thoroddsen
,
S. T.
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2014
).
22.
Mansoor
,
M. M.
,
Vakarelski
,
I. U.
,
Marston
,
J. O.
,
Truscott
,
T. T.
, and
Thoroddsen
,
S. T.
, “
Stable-streamlined and helical cavities following the impact of Leidenfrost spheres
,”
J. Fluid Mech.
823
,
716
754
(
2017
).
23.
Marston
,
J. O.
,
Vakarelski
,
I. U.
, and
Thoroddsen
,
S. T.
, “
Cavity formation by the impact of Leidenfrost spheres
,”
J. Fluid Mech.
699
,
465
488
(
2012
).
24.
Naudé
,
C. F.
and
Ellis
,
A. T.
, “
On the mechanism of cavitation damage nonhemispherical cavities collapsing in contact with a solid boundary
,”
J. Basic Eng.
83
,
648
656
(
1961
).
25.
Oweis
,
G. F.
,
Choi
,
J.
, and
Ceccio
,
S. L.
, “
Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field
,”
J. Acoust. Soc. Am.
115
,
1049
1058
(
2004
).
26.
Park
,
S.
,
Wu
,
T.
,
Chen
,
Y.
,
Teitell
,
M.
, and
Chiou
,
P.
, “
High-speed droplet generation on demand driven by pulse laser-induced cavitation
,”
Lab Chip
11
,
1010
1012
(
2011
).
27.
Philipp
,
A.
and
Lauterborn
,
W.
, “
Cavitation erosion by single laser-produced bubbless
,”
J. Fluid Mech.
361
,
75
116
(
1998
).
28.
Piao
,
L.
and
Park
,
H.
, “
Relation between oil-water interfacial flow structure and their separation in the oil-water mixture flow in a curved channel: An experimental study
,”
Int. J. Multiphase Flow
120
,
103089
(
2019
).
29.
Plesset
,
M. S.
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech.
16
,
277
282
(
1949
).
30.
Sauvola
,
J.
and
Pietikäinen
,
M.
, “
Adaptive document image binarization
,”
Pattern Recognit.
33
,
225
236
(
2000
).
31.
Shi
,
Y.
,
Wang
,
G.
, and
Pan
,
G.
, “
Experimental study on cavity dynamics of projectile water entry with different physical parameters
,”
Phys. Fluids
31
,
067103
(
2019
).
32.
Song
,
W. D.
,
Hong
,
M. H.
,
Lukyanchuk
,
B.
, and
Chong
,
T. C.
, “
Laser-induced cavitation bubbles for cleaning of solid surfaces
,”
J. Appl. Phys.
95
,
2952
2956
(
2004
).
33.
Suzuki
,
K.
,
Kokubu
,
T.
,
Nakano
,
M.
,
Kawamura
,
H.
,
Ueno
,
I.
,
Shida
,
H.
, and
Ogawa
,
O.
, “
Enhancement of heat transfer in subcooled flow boiling with microbubble emission
,”
Exp. Therm. Fluid Sci.
29
,
827
832
(
2005
).
34.
Tomita
,
T.
and
Shima
,
A.
, “
High-speed photographic observations of laser-induced cavitation bubbles in water
,”
Acustica
71
,
161
171
(
1990
).
35.
Truscott
,
T. T.
,
Epps
,
B. P.
, and
Belden
,
J.
, “
Water entry of projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2014
).
36.
Truscott
,
T. T.
,
Epps
,
B. P.
, and
Techet
,
A. H.
, “
Unsteady forces on spheres during free-surface water entry
,”
J. Fluid Mech.
704
,
173
210
(
2012
).
37.
Vakarelski
,
I. U.
,
Chan
,
D. Y.
, and
Thoroddsen
,
S. T.
, “
Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water
,”
Soft Matter
10
,
5662
5668
(
2014
).
38.
Wang
,
G.
and
Cheng
,
P.
, “
Subcooled flow boiling and microbubble emission boiling phenomena in a partially heated microchannel
,”
Int. J. Heat Mass Transfer
52
,
79
91
(
2009
).
39.
Wang
,
J.
,
Faltinsen
,
O. M.
, and
Lugni
,
C.
, “
Unsteady hydrodynamic forces of solid objects vertically entering the water surface
,”
Phys. Fluids
31
,
027101
(
2019
).
40.
Wang
,
Y.
,
Zaytsev
,
M. E.
,
The
,
H. L.
,
Eijkel
,
J. C. T.
,
Zandvliet
,
H. J. W.
,
Zhang
,
X.
, and
Lohse
,
D.
, “
Vapor and gas-bubble growth dynamics around laser-irradiated, water-immersed plasmonic nanoparticles
,”
ACS Nano
11
,
2045
2051
(
2017
).
41.
Zhang
,
F.
,
Yu
,
K.
,
Zhang
,
K.
,
Liu
,
Y.
,
Xu
,
K.
, and
Liu
,
Y.
, “
An emissivity measurement apparatus for near infrared spectrum
,”
Infrared Phys. Technol.
73
,
275
280
(
2015
).
42.
Zhang
,
K.
,
Jian
,
A.
,
Zhang
,
X.
,
Want
,
Y.
,
Li
,
Z.
, and
Tam
,
H.
, “
Laser-induced thermal bubbles for microfluidic applications
,”
Lab Chip
11
,
1389
1395
(
2011
).
43.
Zhao
,
C.
,
Xie
,
Y.
,
Mao
,
Z.
,
Zhao
,
Y.
,
Rufo
,
J.
,
Yang
,
S.
,
Guo
,
F.
,
Mai
,
J. D.
, and
Huang
,
T. J.
, “
Theory and experiment on particle trapping and manipulation via optothermally generated bubbles
,”
Lab Chip
14
,
384
391
(
2014
).
44.
Zhao
,
M.
,
Chen
,
X.
, and
Wang
,
Q.
, “
Wetting failure of hydrophilic surfaces promoted by surface roughness
,”
Sci. Rep.
4
,
5376
(
2014
).
45.
Zheng
,
Y. J.
,
Wang
,
Y.
,
Liu
,
H.
,
Zhu
,
C.
,
Wang
,
S. M.
,
Cao
,
J. X.
, and
Zhu
,
S. N.
, “
Size control of vapor bubbles on a silver film by a tuned CW laser
,”
AIP Adv.
2
,
022155
(
2012
).
46.
Zvirin
,
Y.
,
Hewitt
,
G. R.
, and
Kenning
,
D. B. R.
, “
Boiling on free-falling spheres: Drag and heat transfer coefficients
,”
Exp. Heat Transfer
3
,
185
214
(
1990
).
You do not currently have access to this content.