In a turbulent jet, the numerical investigation of space-time correlations C(r, τ) at two-point and two-time of streamwise fluctuating velocities is presented along the nozzle lipline. Large-eddy simulation (LES) is performed for a Mach 0.9 turbulent jet issuing from a round nozzle. The turbulent boundary layer is well developed at the nozzle outlet, upon the inner wall, by adopting synthetic turbulent inlet boundary conditions. We study the cross correlations of streamwise fluctuating velocities at three particular streamwise positions, i.e., x = 0.71, 7.03, and 34.47r0, corresponding to different stages of jet development, where r0 is the radius of the nozzle. Present results show that the classical Taylor’s frozen-flow model is unable to predict C(r, τ) accurately in this strongly spatially developing shear flow since the distortion of the flow pattern is missing. The isocorrelation contours of C(r, τ) show a clearly elliptical feature, which is found to be well predicted by the elliptic approximation (EA) model [G.-W. He and J.-B. Zhang, “Elliptic model for space-time correlations in turbulent shear flows,” Phys. Rev. E 73, 055303 (2006)]. According to the EA model, C(r, τ) has a scaling form of C(rE, 0) with two characteristic velocities U and V, i.e., rE = (r)2 + V2τ2. By examining LES data, it is found that the characteristic velocity U determined in LES is in general consistent with the theoretical Ut in the EA model, while the trend of V in LES also matches with that of the theoretical Vt. Additionally, it is interesting that the ratio of V to Vt is approximately a constant V/Vt ≃ 1.3 in the turbulent jet.

1.
I.
Proudman
, “
The generation of noise by isotropic turbulence
,”
Proc. R. Soc. London, Ser. A
214
,
119
132
(
1952
).
2.
M. J.
Lighthill
, “
On sound generated aerodynamically I. General theory
,”
Proc. R. Soc. London, Ser. A
211
,
564
587
(
1952
).
3.
H. S.
Ribner
, “
Quadrupole correlations governing the pattern of jet noise
,”
J. Fluid Mech.
38
,
1
24
(
1969
).
4.
M.
Goldstein
and
B.
Rosenbaum
, “
Effect of anisotropic turbulence on aerodynamic noise
,”
J. Acoust. Soc. Am.
54
,
630
645
(
1973
).
5.
W.
Béchara
,
P.
Lafon
,
C.
Bailly
, and
S. M.
Candel
, “
Application of a κ-ϵ turbulence model to the prediction of noise for simple and coaxial free jets
,”
J. Acoust. Soc. Am.
97
,
3518
3531
(
1995
).
6.
C.
Bailly
,
P.
Lafon
, and
S.
Candel
, “
Subsonic and supersonic jet noise predictions from statistical source models
,”
AIAA J.
35
,
1688
1696
(
1997
).
7.
C. K. W.
Tam
and
L.
Auriault
, “
Jet mixing noise from fine-scale turbulence
,”
AIAA J.
37
,
145
153
(
1999
).
8.
G. I.
Taylor
, “
The spectrum of turbulence
,”
Proc. R. Soc. London, Ser. A
164
,
476
(
1938
).
9.
C. C.
Lin
, “
On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equation
,”
Q. Appl. Math.
10
,
295
306
(
1953
).
10.
G.-W.
He
and
J.-B.
Zhang
, “
Elliptic model for space-time correlations in turbulent shear flows
,”
Phys. Rev. E
73
,
055303
(
2006
).
11.
R. H.
Kraichnan
, “
Kolmogorov’s hypotheses and Eulerian turbulence theory
,”
Phys. Fluids
7
,
1723
1734
(
1964
).
12.
H.
Tennekes
, “
Eulerian and Lagrangian time microscales in isotropic turbulence
,”
J. Fluid Mech.
67
,
561
567
(
1975
).
13.
X.
Zhao
and
G.-W.
He
, “
Space-time correlations of fluctuating velocities in turbulent shear flows
,”
Phys. Rev. E
79
,
046316
(
2009
).
14.
X.
He
,
G.
He
, and
P.
Tong
, “
Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis
,”
Phys. Rev. E
81
,
065303
(
2010
).
15.
X.
He
and
P.
Tong
, “
Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection
,”
Phys. Rev. E
83
,
037302
(
2011
).
16.
D.
Lohse
and
K.-Q.
Xia
, “
Small-scale properties of turbulent Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
42
,
335
(
2010
).
17.
C.
Sun
,
S.
Liu
,
Q.
Wang
,
Z.
Wan
, and
D.
Sun
, “
Bifurcations in penetrative Rayleigh-Bénard convection in a cylindrical container
,”
Appl. Math. Mech.
40
,
695
704
(
2019
).
18.
Q.
Zhou
,
C.-M.
Li
,
Z.-M.
Lu
, and
Y.-L.
Liu
, “
Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
683
,
94
111
(
2011
).
19.
W.
Wang
,
X.-L.
Guan
, and
N.
Jiang
, “
TRPIV investigation of space-time correlation in turbulent flows over flat and wavy walls
,”
Acta Mech. Sin.
30
,
468
479
(
2014
).
20.
G. A.
Brès
,
P.
Jordan
,
V.
Jaunet
,
M.
Le Rallic
,
A. V.
Cavalieri
,
A.
Towne
,
S. K.
Lele
,
T.
Colonius
, and
O. T.
Schmidt
, “
Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets
,”
J. Fluid Mech.
851
,
83
124
(
2018
).
21.
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers
,”
Phys. Fluids
23
,
035104
(
2011
).
22.
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
Effects of moderate Reynolds numbers on subsonic round jets with highly disturbed nozzle-exit boundary layers
,”
Phys. Fluids
24
,
105107
(
2012
).
23.
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105
,”
J. Fluid Mech.
701
,
352
385
(
2012
).
24.
C.
Bogey
and
O.
Marsden
, “
Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets
,”
Phys. Fluids
25
,
055106
(
2013
).
25.
C.
Bogey
and
O.
Marsden
, “
Influence of nozzle-exit boundary-layer profile on high-subsonic jets
,” in
20th AIAA/CEAS Aeroacoustics Conference
(
AIAA
,
2014
), p.
2600
.
26.
A. W.
Vreman
, “
An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications
,”
Phys. Fluids
16
,
3670
3681
(
2004
).
27.
C.-Y.
Xu
,
L.-W.
Chen
, and
X.-Y.
Lu
, “
Large-eddy simulation of the compressible flow past a wavy cylinder
,”
J. Fluid Mech.
665
,
238
273
(
2010
).
28.
L.-W.
Chen
,
C.-Y.
Xu
, and
X.-Y.
Lu
, “
Numerical investigation of the compressible flow past an aerofoil
,”
J. Fluid Mech.
643
,
97
126
(
2010
).
29.
C. L.
Rumsey
,
M. D.
Sanetrik
,
R. T.
Biedron
,
N. D.
Melson
, and
E. B.
Parlette
, “
Efficiency and accuracy of time-accurate turbulent Navier-Stokes computations
,”
Comput. Fluids
25
,
217
236
(
1996
).
30.
R.
Biedron
and
J.
Thomas
, “
A generalized patched-grid algorithm with application to the F-18 forebody with actuated control strake
,”
Comput. Syst. Eng.
1
,
563
576
(
1990
).
31.
J. B.
Freund
, “
Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound
,”
AIAA J.
35
,
740
742
(
1997
).
32.
S.
Pirozzoli
,
M.
Bernardini
, and
F.
Grasso
, “
Characterization of coherent vortical structures in a supersonic turbulent boundary layer
,”
J. Fluid Mech.
613
,
205
(
2008
).
33.
N.
Sandham
,
Y.
Yao
, and
A.
Lawal
, “
Large-eddy simulation of transonic turbulent flow over a bump
,”
Int. J. Heat Fluid Flow
24
,
584
595
(
2003
).
34.
L.
Wang
and
X.-Y.
Lu
, “
Flow topology in compressible turbulent boundary layer
,”
J. Fluid Mech.
703
,
255
278
(
2012
).
35.
A.
Pilon
,
A.
Lyrintzis
,
A.
Pilon
, and
A.
Lyrintzis
, “
Integral methods for computational aeroacoustics
,” in
35th Aerospace Sciences Meeting and Exhibit
(
AIAA
,
1997
), p.
20
.
36.
D. J.
Bodony
and
S. K.
Lele
, “
On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets
,”
Phys. Fluids
17
,
085103
(
2005
).
37.
Z.-H.
Wan
,
L.
Zhou
,
H.-H.
Yang
, and
D.-J.
Sun
, “
Large eddy simulation of flow development and noise generation of free and swirling jets
,”
Phys. Fluids
25
,
126103
(
2013
).
38.
Z.-H.
Wan
,
H.-H.
Yang
,
X.-C.
Zhang
, and
D.-J.
Sun
, “
Instability waves and aerodynamic noise in a subsonic transitional turbulent jet
,”
Eur. J. Mech.: B/Fluids
57
,
192
203
(
2016
).
39.
V.
Fleury
,
C.
Bailly
,
E.
Jondeau
,
M.
Michard
, and
D.
Juvé
, “
Space-time correlations in two subsonic jets using dual particle image velocimetry measurements
,”
AIAA J.
46
,
2498
2509
(
2008
).
40.
C.
Bogey
and
C.
Bailly
, “
Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets
,”
J. Fluid Mech.
663
,
507
538
(
2010
).
41.
H.
Schlichting
,
K.
Gersten
, and
E.
Krause
,
Boundary Layer Theory
, 8th ed. (
Springer
,
2000
).
42.
C.
Bogey
,
C.
Bailly
, and
D.
Juvé
, “
Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation
,”
Theor. Comput. Fluid Dyn.
16
,
273
297
(
2003
).
43.
P.
Lush
, “
Measurements of subsonic jet noise and comparison with theory
,”
J. Fluid Mech.
46
,
477
500
(
1971
).
44.
C.
Bogey
and
C.
Bailly
, “
An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets
,”
J. Fluid Mech.
583
,
71
97
(
2007
).
45.
E.
Mollo-Christensen
,
M. A.
Kolpin
, and
J. R.
Martuccelli
, “
Experiments on jet flows and jet noise far-field spectra and directivity patterns
,”
J. Fluid Mech.
18
,
285
301
(
1964
).
46.
P.
Jordan
and
T.
Colonius
, “
Wave packets and turbulent jet noise
,”
Annu. Rev. Fluid Mech.
45
,
173
195
(
2013
).
47.
A. V.
Cavalieri
,
P.
Jordan
,
T.
Colonius
, and
Y.
Gervais
, “
Axisymmetric superdirectivity in subsonic jets
,”
J. Fluid Mech.
704
,
388
420
(
2012
).
48.
P.
Davies
,
M.
Fisher
, and
M.
Barratt
, “
The characteristics of the turbulence in the mixing region of a round jet
,”
J. Fluid Mech.
15
,
337
367
(
1963
).
49.
J.
Kim
and
F.
Hussain
, “
Propagation velocity of perturbations in turbulent channel flow
,”
Phys. Fluids A
5
,
695
706
(
1993
).
You do not currently have access to this content.