A critical analysis of physical insights into ionization waves, plasma states, and attendant phenomena in a gas discharge plasma excited by direct current discussed in the literature is performed. A comparison between synergy bifurcation and kinetic bunching models shows that the former is undoubtedly close-to-perfect and “useful,” and it “is an accurate representation of the real world from the perspective of the intended uses of the model” in the range of gas pressures from 1 to 100 Torr, whereas the latter is obviously imperfect. The latter model is no perspective. The basic factors and ideas definitely established at the early stage of studying striations and current jumps in the discharge are briefly reviewed. The synergy aspect invoking the diffusion-reaction equations, catastrophe theory, and ionization equilibrium principle is demonstrated to permit us to better understand the physics of ionization waves and the underlying physical processes and also to establish a natural and useful link between the parameters of a physical system. Conditions and specific features of their formation and propagation directions are determined. Based on modern concepts of the physical nature of striations and current jumps, it is demonstrated that these ionization waves propagating in a gas discharge are typical ionization-diffusion shock waves.

1.
H.-G.
Purwins
and
L.
Stollenwerk
, “
Synergetic aspects of gas-discharge: Lateral patterns in dc systems with a high ohmic barrier
,”
Plasma Phys. Controlled Fusion
56
,
123001
(
2014
).
2.
P. F.
Kurbatov
, Modern view on physics of low-pressure gas D.C. discharge, preprint of Institute of Laser Physics SB RAS, Novosibirsk, No. 3,
2001
(in Russian).
3.
P. F.
Kurbatov
, “
The positive-column plasma in low-pressure noble gas d.c. discharge as an integral plasma-field system
,”
AIP Adv.
1
,
022115
(
2011
).
4.
P. F.
Kurbatov
, “
A new viewpoint on the ambipolar diffusion Schottky theory
,”
Phys. Plasmas
20
,
043503
(
2013
).
5.
P. F.
Kurbatov
, “
The physical nature of the phenomenon of positive column plasma constriction in low pressure noble gas direct current discharges
,”
Phys. Plasmas
21
,
023508
(
2014
).
6.
P. F.
Kurbatov
, “
Plasma generation in the low- pressure gas d.c. discharge with a simple example of the noble gas system
,”
Probl. At. Sci. Technol., Ser.: Plasma Phys.
13
,
157
(
2007
).
7.
P. F.
Kurbatov
, “
Why and under which conditions can running and standing ionization-diffusion shock waves appear in the direct current gas discharge plasma?
,”
Phys. Fluids
31
,
024105
(
2019
).
8.
L. D.
Tsendin
, “
Nonlocal electron kinetics in gas-discharge plasma
,”
Phys.-Usp.
53
,
133
157
(
2010
).
9.
V. I.
Kolobov
, “
Striations in rare gas plasmas
,”
J. Phys. D: Appl. Phys.
39
,
R487
R506
(
2006
).
10.
Yu.
Golubovskii
,
E.
Pelyuknova
,
F.
Sigeneger
, and
V.
Nekuchaev
, “
Stratification of discharge in noble gases from the viewpoint of the discrete dynamics
,”
Phys. Plasmas
22
,
032105
(
2015
).
11.
V. I.
Kolobov
, “
Advances in electron kinetics and theory of gas discharges
,”
Phys. Plasmas
20
,
101610
(
2013
).
12.
Yu. B.
Golubovskii
,
V. O.
Nekuchaev
, and
A. Yu.
Skoblo
, “
Advances in the study of striations in inert gases
,”
Tech. Phys.
59
,
1787
1800
(
2014
).
13.
Yu. B.
Golubovskii
,
A. V.
Siasko
, and
V. O.
Nekuchaev
, “
Mutual influence of higher diffusion and radiation modes on the contraction of the positive column discharge
,”
Plasma Sources Sci. Technol.
26
,
015012
(
2017
).
14.
Y. Z.
Ionikh
,
A. B.
Meshanov
,
F. B.
Petrov
,
N. A.
Dyatko
, and
A. P.
Napartovich
, “
Partially constricted glow discharge in an argon-nitrogen mixture plasma
,”
Phys. Rep.
34
,
867
878
(
2008
).
15.
I. A.
Shkurenkov
,
Yu. A.
Mankelevich
, and
T. V.
Rakhimova
, “
Diffuse and constricted modes of a dc discharge in neon: Simulation of the hysteresis transition
,”
Plasma Phys. Rep.
34
,
780
793
(
2008
).
16.
Yu. V.
Golubovskii
,
V.
Nekuchaev
,
S.
Gorchakov
, and
D.
Uhrlandt
, “
Contraction of the positive column of discharges in noble gases
,”
Plasma Sources Sci. Technol.
20
,
053002
(
2011
).
17.
Y. Z.
Ionikh
,
N. A.
Dyatko
,
A. V.
Meshchanov
,
A. P.
Napartovich
, and
F. B.
Petrov
, “
Partial constriction in a glow discharge in argon with nitrogen admixture
,”
Plasma Sources Sci. Technol.
21
,
055008
(
2012
).
18.
R. C.
Davidson
, “
Editorial: Announcement of editorial policy statement on verification and validation
,”
Phys. Plasmas
14
,
060401
(
2007
).
19.
A. V.
Nedospasov
, “
Striations
,”
Sov. Phys.-Usp.
11
,
174
187
(
1968
).
20.
L.
Pecarek
, “
Ionization waves (striations) in a discharge plasma
,”
Sov. Phys.-Usp.
11
,
188
208
(
1968
).
21.
P. S.
Landa
,
N. A.
Miskinova
, and
Yu.V.
Ponomarev
, “
Ionization waves in low-temperature plasmas
,”
Sov. Phys.-Usp.
23
,
813
834
(
1980
).
22.
B. S.
Kerner
and
V. V.
Osipov
, “
Autosolitons
,”
Sov. Phys.-Usp.
32
,
101
138
(
1989
).
23.
H.
Wilhelmsson
and
E.
Lazzaro
,
Reaction-Diffusion Problems in the Physics of Hot Plasmas
(
IOP Publishing
,
Bristol, Philadelphia
,
2001
);
H.
Wilhelmsson
and
E.
Lazzaro
, in
Reaction-Diffusion Problems in the Physics of Hot Plasmas
, Series in Plasma Physics, edited by
E.
Lazzaro
and
H.
Wilhelmsson
(
CRC Press, Taylor & Francis
,
2000
), Vol. 6, ISBN: 978-0-7503-0615-7.
24.
Encyclopedia of Low Temperature Plasma: 2 Volumes
, edited by
V. E.
Fortov
(
Nauka
,
Moscow
,
2000
) (in Russian).
25.
V. L.
Granovsky
,
Electric Current in a Gas: Steady-State Current
, edited by
L. A.
Sena
and
V. E.
Golant
(
Nauka
,
Moscow
,
1971
) (in Russian).
26.
Yu. P.
Raizer
,
Gas Discharge Physics
(
Springer-Verlag
,
Berlin
,
1991
).
27.
B. M.
Smirnov
,
Introduction to Physics of Plasma
(
Mir Publisher
,
Moscow
,
1977
).
28.
B. M.
Smirnov
,
Gazorazryadnaya Plazma
(
M.: MFTI
,
1992
) (in Russian).
29.
B. M.
Smirnov
, “
Modeling of gas discharge plasma
,”
Phys.-Usp.
52
,
559
572
(
2009
).
30.
A. A.
Kudryavtsev
,
A. S.
Smirnov
, and
L. D.
Tsendin
,
Physics of Glow-Discharge
(
Publishing house “Lan”
,
Saint Petersburg
,
2010
) (in Russian).
31.
B. M.
Smirnov
,
Fundamentals of Ionized Gases
(
Wiley
,
Weinheim
,
2011
).
32.
M. A.
Lieberman
and
A.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley Interscience
,
Hoboken
,
2005
).
33.
C.
Holland
, “
Validation metrics for turbulent plasma transport
,”
Phys. Plasmas
23
,
060901
(
2016
).
34.
B.
Bruhn
,
B.-P.
Koch
, and
C.
Wilke
, “
Improved understanding of the nonlinear properties of ionization instabilities in plasmas
,”
Contrib. Plasma Phys.
45
,
328
337
(
2005
).
35.
Yu
Qin
,
K.
Xie
,
Yu
Zhang
, and
J.
Ouyang
, “
Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge
,”
Phys. Plasmas
23
,
023501
(
2016
).
36.
J. T.
Gudmundsson
and
A.
Hecimovic
, “
Foundations of DC plasma sources
,”
Plasma Sources Sci. Technol.
26
,
123001
(
2017
).
37.
Kh. A.
Gerpetov
and
A. A.
Zaitsev
, “
Layered high-frequency discharge in inert gases
,”
Sov. Phys. JETP
24
,
516
(
1953
) (in Russian).
38.
A. A.
Zaitsev
and
G. S.
Leonov
, “
Investigation of mobile straits in a DC current discharge
,”
Sov. Radiotechnol. Electron.
10
,
913
(
1965
) (in Russian).
39.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. London, Ser. B
237
(
641
),
37
72
(
1952
).
40.
G.
Nicolas
and
I.
Prigogine
,
Self-Organization in Nonequilibrium System: From Dissipative Structures to Order through Fluctuations
(
John Wiley & Sons
,
New York, London, Sydney, Toronto
,
1977
).
41.
G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North-Holland Physics Publishing
,
Amsterdam, Oxford, New York, Tokyo
,
1984
).
42.
Yu. L.
Klumontovich
, in
Encyclopedia of Low-Temperature Plasma, New Directions in Kinetic Plasma
, edited by
V. E.
Fortov
(
Integratsiya Centre
,
Moscow
,
2001
), Vol. I-1.
43.
B. M.
Smirnov
,
Plasma Processes and Plasma Kinetics
(
Wiley-VCH
,
Berlin
,
2007
).
44.
H.
Haken
,
Synergetics
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1978
).
45.
G.
Knorr
, “
Hysteresis phenomena in plasmas in catastrophe theory
,”
Plasma Phys. Controlled Fusion
26
,
949
954
(
1984
).
46.
P. G.
De Gennes
,
Superconductivity of Metal and Alloys
(
W. A. Benjamin, Inc.
,
New York, Amsterdam
,
1966
).
47.
L. G.
Huxley
and
R. W.
Crompton
,
The Diffusion and Drift of Electrons in Gases
(
Wiley
,
New York
,
1974
).
48.
E.
Nasser
,
Fundamentals of Gaseous Ionization and Plasma Electronics
(
Wiley-Interscience
,
New York
,
1971
).
49.
V. L.
Bonch-Bruevich
,
I. P.
Zvyagin
, and
A. G.
Mironov
,
Domain Electrical Instabilities in Semiconductors
(
Consultants Bureau
,
New York, USA
,
1975
).
50.
P.
Debye
and
E.
Hünckel
, “
The theory of electrolytes. I. Lowering of freezing point and related phenomena
,”
Phys. Z.
24
,
185
206
(
1923
).
51.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley Press
,
Cambridge
,
1950
).
52.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
(
Pergamon Press
,
Oxford
,
1976
), Vol. 1.
53.
R.
Thom
,
Structural Stability and Morphogenesis: An Outline of a General Theory of Models
(
Benjamin Cummings
,
Redwood City, CA
,
1975
).
54.
G.
Gilmore
,
Catastrophe Theory for Scientists and Engineers in 2 Volumes
(
John Wiley & Sons
,
New York, Chichester, Brisbane, Toronto
,
1981
).
55.
A. B.
Stewart
, “
Oscillating glow discharge plasma
,”
J. Appl. Phys.
27
,
911
916
(
1956
).
56.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
John Wiley & Sons
,
New York, London, Sydney, Toronto
,
1974
).
57.
A.
Chauhan
,
R.
Arora
, and
A.
Tomar
, “
Convergence of strong shock waves in non-ideal magnetogasdynamics
,”
Phys. Fluids
30
,
116105
(
2018
).
58.
S.
Shah
and
R.
Sinh
, “
Collision of a steepened wave with a blast wave in dusty real reacting gases
,”
Phys. Fluids
31
,
076103
(
2019
).
You do not currently have access to this content.