High-resolution large-eddy simulations of turbulent mixing at the inner surface of a dense shell which undergoes forced compression by a spherically imploding shock wave are presented. Perturbations on the inner surface grow as a result of Richtmyer-Meshkov and Rayleigh-Taylor instabilities and effects related to geometric convergence and compressibility. Three different cases with different initial surface perturbations, one broadband and two narrowband, are considered. The perturbation power spectrum is related to the mode number via Pn, where the case with broadband perturbations has n = −2, and modes in the range = 6–200. The narrowband perturbations have n = 0 and modes in the range = 50–100 and = 100–200. The simulations are carried out in spherical coordinates using the PLUTO hydrodynamics code. Results on the mix layer width, molecular mix, and turbulent kinetic energy distribution are presented, demonstrating clearly the impact of the amplitude and spectral form of the initial perturbation on the evolution of integral properties. A recently developed model predicting the growth of single mode perturbations in spherical implosions including shock waves is extended to predict mix layer amplitudes for broadband and narrowband cases, along with a model proposed by Mikaelian [“Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells,” Phys. Rev. A 42, 3400–3420 (1990)]. The resultant layer amplitude predictions from the new model are in good agreement with the numerical results while the longest wavelengths are not yet saturated, while Mikaelian’s model agrees well where the initial modes are saturated.

1.
J.
Nuckolls
,
L.
Wood
,
A.
Thiessen
, and
G.
Zimmermann
, “
Laser compression of matter to super-high densities: Thermonuclear (CTR) applications
,”
Nature
239
,
139
(
1972
).
2.
J.
Lindl
,
P.
Amendt
,
R.
Berger
,
S.
Glendinning
,
S.
Glenzer
,
S.
Haan
,
R. L.
Kauffman
,
O.
Landen
, and
L.
Suter
, “
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
,”
Phys. Plasmas
11
,
339
491
(
2004
).
3.
J.
Lindl
,
O.
Landen
,
J.
Edwards
,
E.
Moses
, and
N.
Team
, “
Review of the National Ignition Campaign 2009-2012
,”
Phys. Plasmas
21
,
020501
(
2014
).
4.
O.
Hurricane
,
D.
Callahan
,
D.
Casey
,
P.
Celliers
,
C.
Cerjan
,
E.
Dewald
,
T.
Dittrich
,
T.
Döppner
,
D.
Hinkel
,
L.
Hopkins
,
J.
Kline
,
S. L.
Pape
,
T.
Ma
,
A.
Macphee
,
J.
Milovich
,
A.
Pak
,
H.
Park
,
P.
Patel
,
B.
Remington
,
J.
Salmonson
,
P.
Springer
, and
R.
Tommasini
, “
Fuel gain exceeding unity in an inertially confined fusion implosion
,”
Nature
506
,
343
347
(
2014
).
5.
R.
Betti
and
O.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nature
12
,
435
448
(
2016
).
6.
O.
Hurricane
,
D.
Callahan
,
D.
Casey
,
E.
Dewald
,
T.
Dittrich
,
T.
Döppner
,
S.
Haan
,
D.
Hinkel
,
L. B.
Hopkins
,
O.
Jones
,
A.
Kritcher
,
S. L.
Pape
,
T.
Ma
,
A.
MacPhee
,
J.
Milovich
,
J.
Moody
,
A.
Pak
,
H.
Park
,
P.
Patel
,
J.
Ralph
,
H.
Robey
,
J.
Ross
,
J.
Salmonson
,
B.
Spears
,
P.
Springer
,
R.
Tommasini
,
F.
Albert
,
L.
Benedetti
,
R.
Bionta
,
E.
Bond
,
D.
Bradley
,
J.
Caggiano
,
P.
Celliers
,
C.
Cerjan
,
J.
Church
,
R.
Dylla-Spears
,
D.
Edgell
,
M.
Edwards
,
D.
Fittinghoff
,
M. B.
Garcia
,
A.
Hamza
,
R.
Hatarik
,
H.
Herrmann
,
M.
Hohenberger
,
D.
Hoover
,
J.
Kline
,
G.
Kyrala
,
B.
Kozioziemski
,
G.
Grim
,
J.
Field
,
J.
Frenje
,
N.
Izumi
,
M. G.
Johnson
,
S.
Khan
,
J.
Knauer
,
T.
Kohut
,
O.
Landen
,
F.
Merrill
,
P.
Michel
,
A.
Moore
,
S.
Nagel
,
A.
Nikroo
,
T.
Parham
,
R.
Rygg
,
D.
Sayre
,
M.
Schneider
,
D.
Shaughnessy
,
D.
Strozzi
,
R.
Town
,
D.
Turnbull
,
P.
Volegov
,
A.
Wan
,
K.
Widmann
,
C.
Wilde
, and
C.
Yeamans
, “
Inertially confined fusion plasmas dominated by alpha-particle self-heating
,”
Nat. Phys.
12
,
800
(
2016
).
7.
B.
Jun
,
T.
Jones
, and
M.
Norman
, “
Interaction of Rayleigh-Taylor fingers and circumstellar cloudlets in young supernova remnants
,”
Astrophys. J.
468
,
L59
(
1996
).
8.
A.
Almgren
,
J.
Bell
,
C.
Rendleman
, and
M.
Zingale
, “
Low Mach number modeling of type Ia supernovae. I. Hydrodynamics
,”
Astrophys. J.
637
,
922
936
(
2006
).
9.
A.
Almgren
,
J.
Bell
,
C.
Rendleman
, and
M.
Zingale
, “
Low Mach number modeling of type Ia supernovae. II. Energy evolution
,”
Astrophys. J.
649
,
927
938
(
2006
).
10.
A.
Almgren
,
J.
Bell
,
A.
Nonaka
, and
M.
Zingale
, “
Low Mach number modeling of type Ia supernovae. III. Reactions
,”
Astrophys. J.
684
,
449
470
(
2008
).
11.
M.
Zingale
,
A.
Almgren
,
J.
Bell
,
A.
Nonaka
, and
S.
Woosley
, “
Low Mach number modeling of type Ia supernovae. IV. White dwarf convection
,”
Astrophys. J.
704
,
196
210
(
2009
).
12.
C.
Joggerst
,
A.
Almgren
, and
S.
Woosley
, “
Three-dimensional simulations of Rayleigh-Taylor mixing in core-collapse supernovae with Castro
,”
Astrophys. J.
723
,
353
363
(
2010
).
13.
Lord
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
(
1882
).
14.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
,”
Proc. R. Soc. London, Ser. A
201
,
192
196
(
1950
).
15.
R.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math
13
,
297
319
(
1960
).
16.
E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1969
).
17.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720-722
,
1
136
(
2017
).
18.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723-725
,
1
160
(
2017
).
19.
W.
Penney
and
A.
Price
, “
On the changing form of a nearly spherical submarine bubble
,”
Underwater Explos. Res.
2
,
145
161
(
1942
).
20.
R.
Cole
,
Underwater Explosions
(
Princeton University Press
,
1949
).
21.
G.
Bell
, “
Taylor instability on cylinders and spheres in the small amplitude approximation
,” Technical Report No. LA-1321,
Los Alamos National Laboratory
,
Los Alamos, NM
,
1951
.
22.
M.
Plesset
, “
On the stability of fluid flows with spherical symmetry
,”
J. Appl. Phys.
25
,
96
98
(
1954
).
23.
K. O.
Mikaelian
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells
,”
Phys. Rev. A
42
,
3400
3420
(
1990
).
24.
R.
Krechetnikov
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities of flat and curved interfaces
,”
J. Fluid Mech.
625
,
387
410
(
2009
).
25.
J.
Glimm
,
J.
Grove
,
Y.
Zhang
, and
S.
Dutta
, “
Numerical study of axisymmetric Richtmyer-Meshkov instability and azimuthal effect on spherical mixing
,”
J. Stat. Phys.
107
,
241
260
(
2002
).
26.
V. A.
Thomas
and
R. J.
Kares
, “
Drive asymmetry and the origin of turbulence in an ICF implosion
,”
Phys. Rev. Lett.
109
,
075004
(
2012
).
27.
C.
Joggerst
,
A.
Nelson
,
P.
Woodward
,
C.
Lovekin
,
T.
Masser
,
C.
Fryer
,
P.
Ramaprabhu
,
M.
Francois
, and
G.
Rockefeller
, “
Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells
,”
J. Comput. Phys.
275
,
154
173
(
2014
).
28.
M.
Flaig
,
D.
Youngs
,
D.
Clark
,
C.
Weber
, and
B.
Thornber
, “
Single-mode perturbation growth in an idealized inertial confinement fusion implosion
,”
J. Comput. Phys.
371
,
801
819
(
2018
).
29.
M.
El Rafei
,
L.
Heidt
, and
B.
Thornber
, “
A comparison of a modified curvilinear approach for compressible problems in spherical geometry and a truly spherical high-order method
,” in
Proceedings of the 21st Australasian Fluid Mechanics Conference
,
2018
.
30.
M. M.
Marinak
,
G. D.
Kerbel
,
N. A.
Gentile
,
O.
Jones
,
D.
Munro
,
S.
Pollaine
,
T. R.
Dittrich
, and
S. W.
Haan
, “
Three-dimensional HYDRA simulations of national ignition facility targets
,”
Phys. Plasmas
8
,
2275
(
2001
).
31.
D.
Youngs
and
R.
Williams
, “
Turbulent mixing in spherical implosions
,”
Int. J. Numer. Methods Fluids
56
,
1597
1603
(
2008
).
32.
D. S.
Clark
,
D. E.
Hinkel
,
D. C.
Eder
,
O. S.
Jones
,
S. W.
Haan
,
B. A.
Hammel
,
M. M.
Marinak
,
J. L.
Milovich
,
H. F.
Robey
,
L. J.
Suter
, and
R. P. J.
Town
, “
Detailed implosion modelling of deuterium-tritium layered experiments on the National Ignition Facility
,”
Phys. Plasmas
20
,
056318
(
2013
).
33.
M.
Lombardini
,
D.
Pullin
, and
D.
Meiron
, “
Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth
,”
J. Fluid Mech.
748
,
85
112
(
2014
).
34.
M.
Lombardini
,
D.
Pullin
, and
D.
Meiron
, “
Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics
,”
J. Fluid Mech.
748
,
113
142
(
2014
).
35.
I. V.
Igumenshchev
,
V. N.
Goncharov
,
F. J.
Marshall
,
J. P.
Knauer
,
E. M.
Campbell
,
C. J.
Forrest
,
D. H.
Froula
,
V. Y.
Glebov
,
E. L.
McCrory
,
S. P.
Regan
,
T. C.
Sangster
,
S.
Skupsky
, and
C.
Stoeckl
, “
Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA
,”
Phys. Plasmas
23
,
052702
(
2016
).
36.
I.
Boureima
,
P.
Ramaprabhu
, and
N.
Attal
, “
Properties of the turbulent mixing layer in a spherical implosion
,”
J. Fluids Eng.
140
,
050905
(
2018
).
37.
B.
Thornber
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability
,”
J. Fluid Mech.
654
,
99
139
(
2010
).
38.
B.
Thornber
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
Physics of the single-shocked and reshocked Richtmyer-Meshkov instability
,”
J. Turbul.
13
,
N10
(
2012
).
39.
O.
Soulard
,
F.
Guillois
, and
J.
Griffond
, “
Permanence of large eddies in Richtmyer-Meshkov turbulence with a small Atwood number
,”
Phys. Rev. Fluids
3
,
104603
(
2018
).
40.
A.
Mignone
,
G.
Bodo
,
S.
Massaglia
,
T.
Matsakos
,
O.
Tesileanu
,
C.
Zanni
, and
A.
Ferrari
, “
PLUTO: A numerical code for computational astrophysics
,”
Astrophys. J., Suppl. Ser.
170
,
228
242
(
2007
).
41.
A.
Mignone
,
C.
Zanni
,
P.
Tzeferacos
,
B.
van Straalen
,
P.
Colella
, and
G.
Bodo
, “
The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics
,”
Astrophys. J., Suppl. Ser.
198
,
7
(
2012
).
42.
N. K.
Yamaleev
and
M. H.
Carpenter
, “
A systematic methodology for constructing high-order energy stable WENO schemes
,”
J. Comput. Phys.
228
,
4248
4272
(
2009
).
43.
B.
Thornber
and
D.
Drikakis
, “
Numerical dissipation of upwind schemes in low Mach flow
,”
Int. J. Numer. Methods Fluids
56
,
1535
1541
(
2008
).
44.
B.
Thornber
,
A.
Mosedale
,
D.
Drikakis
,
D.
Youngs
, and
R. J. R.
Williams
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
(
2008
).
45.
A.
Suresh
and
H. T.
Huynh
, “
Accurate monotonicity-preserving schemes with Runge-Kutta time stepping
,”
J. Comput. Phys.
136
,
83
99
(
1997
).
46.
S. W.
Haan
,
J. D.
Lindl
,
D. A.
Callahan
,
D. S.
Clark
,
J. D.
Salmonson
,
B. A.
Hammel
,
L. J.
Atherton
,
R. C.
Cook
,
M. J.
Edwards
,
S.
Glenzer
,
A. V.
Hamz
,
S. P.
Hatchett
,
M. C.
Herrmann
,
D. E.
Hinkel
,
D. D.
Ho
,
H.
Huang
,
O. S.
Jones
,
J.
Kline
,
G.
Kyrala
,
O. L.
Landen
,
B. J.
MacGowan
,
M. M.
Marinak
,
D. D.
Meyerhofer
,
J. L.
Milovich
,
K. A.
Moreno
,
E. I.
Moses
,
D. H.
Munro
,
A.
Nikroo
,
R. E.
Olson
,
K.
Peterson
,
S. M.
Pollaine
,
J. E.
Ralph
,
H. F.
Robey
,
B. K.
Spears
,
P. T.
Springer
,
L. J.
Suter
,
C. A.
Thomas
,
R. P.
Town
,
R.
Vesey
,
S. V.
Weber
,
H. L.
Wilkens
, and
D. C.
Wilson
, “
Point design, targets, specifications, and requirements for the 2010 ignition compaign on the National Ignition Facility
,”
Phys. Plasmas
18
,
051001
(
2011
).
47.
M.
Vandenboomgaerde
,
D.
Souffland
,
C.
Mariani
,
L.
Biamino
,
G.
Jourdan
, and
L.
Houas
, “
An experimental and numerical investigation of the dependency on the initial conditions of the Richtmyer-Meshkov instability
,”
Phys. Fluids
26
,
024109
(
2014
).
48.
B.
Thornber
,
J.
Griffond
,
O.
Poujade
,
N.
Attal
,
H.
Varshochi
,
P.
Bigdelou
,
P.
Ramaprabhu
,
B.
Olson
,
J.
Greenough
,
Y.
Zhou
,
O.
Schilling
,
K. A.
Garside
,
R. J. R.
Williams
,
C. A.
Batha
,
P. A.
Kuchugov
,
M. E.
Ladonkina
,
V. F.
Tishkin
,
N. V.
Zmitrenko
,
V. B.
Rozanov
, and
D. L.
Youngs
, “
Late time growth rate, mixing and anisotropy in the multimode narrowband Richtmyer-Meshkov instability: The θ-group collaboration
,”
Phys. Fluids
29
,
105107
(
2017
).
49.
B.
Thornber
,
J.
Griffond
,
P.
Bigdelou
,
I.
Boureima
,
P.
Ramaprabhu
,
O.
Schilling
, and
R. J. R.
Williams
, “
Turbulent transport and mixing in the multimode narrowband Richtmyer-Meshkov instability
,”
Phys. Fluids
31
,
096105
(
2019
).
50.
R.
Epstein
, “
On the Bell-Plesset effects: The effects of uniform compression and geometrical convergence on the classical Rayleigh-Taylor instability
,”
Phys. Plasmas
11
,
5114
5124
(
2004
).
51.
S. W.
Haan
, “
Weakly nonlinear hydrodynamic instabilties in inertial fusion
,”
Phys. Plasmas
3
,
2349
(
1991
).
52.
K.
Read
, “
Experimental investigation of turbulent mixing by Rayleigh-Taylor instability
,”
Physica D
12
,
45
58
(
1984
).
53.
B.
Thornber
,
D.
Drikakis
,
D.
Youngs
, and
R.
Williams
, “
Growth of a Richtmyer-Meshkov turbulent layer after reshock
,”
Phys. Fluids
23
,
095107
(
2011
).
54.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
34
(
1994
).
You do not currently have access to this content.