We simulate flow and dispersion of tracers in three-dimensional fractured geometries obtained with Voronoi tessellations. “Fractures” are generated and discretized using a parallel in-house code. These “fractures” can also be regarded as the high-permeability flow paths through the rock or a network of the “super-k” channels. The generated geometry contains multiply-connected matrix and fracture regions. The matrix region represents a porous rock filled with solid, water, and oil. Tracers diffuse in both regions, but advection is limited only to the fractures. The lattice-Boltzmann and random-walk particle-tracking methods are employed in flow and transport simulations. Mass-transfer across the matrix–fracture interface is implemented using the specular reflection boundary condition. Tracer partitioning coefficients can vary among the tracer compounds and in space. We use our model to match a field tracer injection test designed to determine remaining oil saturation. By analyzing the time-dependent behavior of the fully resolved, three-dimensional “fracture”–matrix geometry, we show that the industry-standard approach may consistently overestimate remaining oil saturation. For a highly heterogeneous reservoir system, the relative error of the field-based remaining oil estimates may exceed 50%.

1.
G.
Mikutis
,
C. A.
Deuber
,
L.
Schmid
,
A.
Kittilä
,
N.
Lobsiger
,
M.
Puddu
,
D. O.
Asgeirsson
,
R. N.
Grass
,
M. O.
Saar
, and
W. J.
Stark
, “
Silica-encapsulated DNA-based tracers for aquifer characterization
,”
Environ. Sci. Technol.
52
,
12142
12152
(
2018
).
2.
M.
Jin
,
M.
Delshad
,
V.
Dwarakanath
,
D. C.
McKinney
,
G. A.
Pope
,
K.
Sepehrnoori
,
C. E.
Tilburg
, and
R. E.
Jackson
, “
Partitioning tracer test for detection, estimation, and remediation performance assessment of subsurface nonaqueous phase liquids
,”
Water Resour. Res.
31
,
1201
1211
, (
1995
).
3.
V.
Dwarakanath
,
N.
Deeds
, and
G. A.
Pope
, “
Analysis of partitioning interwell tracer tests
,”
Environ. Sci. Technol.
33
,
3829
3836
(
1999
).
4.
P. E.
Mariner
,
M.
Jin
,
J. E.
Studer
, and
G. A.
Pope
, “
The first vadose zone partitioning interwell tracer test for nonaqueous phase liquid and water residual
,”
Environ. Sci. Technol.
33
,
2825
2828
(
1999
).
5.
M.
Sanni
,
M.
Al-Abbad
,
S.
Kokal
,
Ø.
Dugstad
,
S.
Hartvig
, and
O.
Huseby
, “
Pushing the envelope of residual oil measurement: A field case study of a new class of inter-well chemical tracers
,” in
2016: SPE Annual Technical Conference and Exhibition, Dubai, UAE, 26–28 September 2016
(
Society of Petroleum Engineers
,
Dubai, UAE
,
2016
), SPE-181324-MS.
6.
J. S.
Tang
and
B.
Harker
, “
Interwell tracer test to determine residual oil saturation in a gas-saturated reservoir. Part I: Theory and design
,”
J. Can. Pet. Technol.
30
,
76
85
(
1991
).
7.
J.
Vanderborght
,
M.
Vanclooster
,
A.
Timmerman
,
P.
Seuntjens
,
D.
Mallants
,
D.
Kim
,
D.
Jacques
,
L.
Hubrechts
,
C.
Gonzalez
,
J.
Feyen
,
J.
Diels
, and
J.
Deckers
, “
Overview of inert tracer experiments in key belgian soil types: Relation between transport and soil morphological and hydraulic properties
,”
Water Resour. Res.
37
,
2873
2888
, (
2013
).
8.
P.
Villegas
,
V.
Paredes
,
T.
Betancur
,
J. D.
Taupin
, and
L. E.
Toro
, “
Groundwater evolution and mean water age inferred from hydrochemical and isotopic tracers in a tropical confined aquifer
,”
Hydrol. Processes
32
,
2158
2175
(
2018
).
9.
T. C.
Atkinson
,
D. I.
Smith
,
J. J.
Lavis
, and
R. J.
Witaker
, “
Experiments in tracing underground waters in limestones
,”
J. Hydrol.
19
,
323
349
(
1973
).
10.
J. C.
Giddings
,
Dynamics of Chromatography: Principles and Theory
(
Marcel Dekker
,
1965
).
11.
G. M.
Shook
,
S. L.
Ansley
, and
A.
Wylie
, “
Tracers and tracer testing: Design, implementation, and interpretation methods
,” Technical Report INEEL/EXT-03-01466,
Idaho National Engineering and Environmental Laboratory
,
2004
.
12.
B.
Zemel
,
Tracers in the Oil Field
, Developments in Petroleum Science Vol. 43 (
Elsevier Science
,
1995
).
13.
K. M.
Gerke
,
M. V.
Karsanina
, and
D.
Mallants
, “
Universal stochastic multiscale image fusion: An example application for shale rock
,”
Sci. Rep.
5
,
15880
(
2015
).
14.
M. V.
Karsanina
and
K. M.
Gerke
, “
Hierarchical optimization: Fast and robust multiscale stochastic reconstructions with rescaled correlation functions
,”
Phys. Rev. Lett.
121
,
265501
(
2018
).
15.
J.
Warren
and
P.
Root
, “
The behavior of naturally fractured reservoirs
,”
Soc. Pet. Eng. J.
3
,
245
255
(
1963
).
16.
H.
Kazemi
,
L. S.
Merrill
,
K. L.
Porterfield
, and
P. R.
Zeman
, “
Numerical simulation of water-oil flow in naturally fractured reservoirs
,”
Soc. Pet. Eng. J.
16
,
317
326
(
1976
).
17.
P.
Małoszewski
and
A.
Zuber
, “
On the theory of tracer experiments in fissured rocks with a porous matrix
,”
J. Hydrol.
79
,
333
358
(
1985
).
18.
F.
de Smedt
and
P.
Wierenga
, “
Mass transfer in porous media with immobile water
,”
J. Hydrol.
41
,
59
67
(
1979
).
19.
S.
Geiger
,
M.
Dentz
, and
I.
Neuweiler
, “
A novel multi-rate dual-porosity model for improved simulation of fractured and multiporosity reservoirs
,”
Soc. Pet. Eng. J.
18
,
670
684
(
2013
).
20.
D.
Cantrell
and
R.
Hagerty
, “
Reservoir rock classification, Arab-D reservoir, Ghawar field, Saudi Arabia
,”
GeoArabia
8
,
435
462
(
2003
).
21.
L.
Mi
,
H.
Jiang
,
Y.
Wang
, and
B.
Yan
, “
A novel and adaptive mesh method for arbitrary discrete fracture networks DFN simulations
,” in
SPE Middle East Oil & Gas Show and Conference, Manama, Kingdom of Bahrain, 6–9 March 2017
(
Society of Petroleum Engineers
,
Manama, Kingdom of Bahrain
,
2017
), SPE-183980-MS.
22.
A.
Fourno
,
T.-D.
Ngo
,
B.
Noetinger
, and
C.
La Borderie
, “
FraC: A new conforming mesh method for discrete fracture networks
,”
J. Comput. Phys.
376
,
713
732
(
2019
).
23.
T.-D.
Ngo
,
A.
Fourno
, and
B.
Noetinger
, “
Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software
,”
J. Hydrol.
554
,
66
79
(
2017
).
24.
S.
Berrone
,
M. F.
Benedetto
,
A.
Borio
,
S.
Pieraccini
, and
S.
Scialó
, “
The virtual element method for large scale discrete fracture network simulations: Fracture-independent mesh generation
,”
Proc. Appl. Math. Mech.
15
,
19
22
(
2015
).
25.
S.
Khirevich
and
T.
Patzek
, “
Behavior of numerical error in pore-scale lattice Boltzmann simulations with simple bounce-back rule: Analysis and highly accurate extrapolation
,”
Phys. Fluids
30
,
093604
(
2018
).
26.
A.
Okabe
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
, 2nd ed. (
John Wiley & Sons
,
2000
).
27.
C. W.
Passchier
and
R. A. J.
Trouw
,
Microtectonics
, 2nd ed. (
Springer Berlin Heidelberg
,
2005
).
28.
C.
An
,
B.
Yan
,
M.
Alfi
,
L.
Mi
,
J. E.
Killough
, and
Z.
Heidari
, “
Estimating spatial distribution of natural fractures by changing NMR T2 relaxation with magnetic nanoparticles
,”
J. Pet. Sci. Eng.
157
,
273
287
(
2017
).
29.
F. N.
Rashid
, “
The Kometan formation: Reservoir characteristics of tight carbonates in the Western Zagros Basin
,” Ph.D. thesis,
University of Leeds
,
England
,
2015
, Chap. 3, p.
39
.
30.
V.
Beaver
, Tundra Polygons,
2011
, www.vickibeaver.com; accessed 04 July 2019.
31.
M.
Wilson
, Wooster Geologists,
2011
, accessed 04 July 2019.
32.
C.
Carvalho
,
P.
Viegas
, and
M.
Cachao
, “
Thalassinoides and its producer: Populations of Mecochirus buried within their burrow systems, boca do chapim formation (lower cretaceous), Portugal
,”
Palaios
22
,
104
109
(
2007
).
33.
S.
Raghavachary
, “
Fracture generation on polygonal meshes using Voronoi polygons
,” in
ACM SIGGRAPH 2002 Conference Abstracts and Applications, SIGGRAPH ’02
(
ACM
,
New York, NY, USA
,
2002
), pp.
187
.
34.
E.
Ghazvinian
,
M.
Diederichs
, and
R.
Quey
, “
3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing
,”
J. Rock Mech. Geotech. Eng.
6
,
506
521
(
2014
).
35.
M.
Adda-Bedia
,
R.
Arias
,
M.
Ben Amar
, and
F.
Lund
, “
Dynamic instability of brittle fracture
,”
Phys. Rev. Lett.
82
,
2314
2317
(
1999
).
36.
S.
Kumar
,
S. K.
Kurtz
,
J. R.
Banavar
, and
M. G.
Sharma
, “
Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study
,”
J. Stat. Phys.
67
,
523
551
(
1992
).
37.
V.
Lucarini
, “
Three-dimensional random Voronoi tessellations: From cubic crystal lattices to Poisson point processes
,”
J. Stat. Phys.
134
,
185
206
(
2009
).
38.
C. B.
Barber
,
D. P.
Dobkin
, and
H.
Huhdanpaa
, “
The quickhull algorithm for convex hulls
,”
ACM Trans. Math. Software
22
,
469
483
(
1996
).
39.
A.
Fourno
,
C.
Grenier
,
A.
Benabderrahmane
, and
F.
Delay
, “
A continuum voxel approach to model flow in 3D fault networks: A new way to obtain up-scaled hydraulic conductivity tensors of grid cells
,”
J. Hydrol.
493
,
68
80
(
2013
).
40.
J.
Hyman
,
C.
Gable
,
S.
Painter
, and
N.
Makedonska
, “
Conforming delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy
,”
SIAM J. Sci. Comput.
36
,
A1871
A1894
(
2014
).
41.
C. K.
Aidun
and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex flows
,”
Annu. Rev. Fluid Mech.
42
,
439
472
(
2010
).
42.
D.
Maggiolo
,
F.
Picano
, and
M.
Guarnieri
, “
Flow and dispersion in anisotropic porous media: A lattice-Boltzmann study
,”
Phys. Fluids
28
,
102001
(
2016
).
43.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
44.
Y.
Qian
,
D.
d’Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
,
479
484
(
1992
).
45.
I.
Ginzburg
and
D.
d’Humières
, “
Multireflection boundary conditions for lattice Boltzmann models
,”
Phys. Rev.
68
,
066614
(
2009
).
46.
D.
d’Humières
, “
Generalized lattice Boltzmann equations rarefied gas dynamics: Theory and simulations
,”
Prog. Astronaut. Aeronaut.
159
,
450
458
(
1992
).
47.
D.
d’Humières
,
I.
Ginzburg
,
M.
Krafczyk
,
P.
Lallemand
, and
L.-S.
Luo
, “
Generalized Lattice-Boltzmann equations
,” in
18th International Symposium, Rarefied gas dynamics, Vancouver, Canada, 1992
(
Am. Inst. Aeronaut. Astronaut.
,
Washington, DC
) (
2002
).
48.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
d’Humières
, “
Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions
,”
Commun. Comput. Phys.
3
,
427
478
(
2008
).
49.
S.
Khirevich
,
I.
Ginzburg
, and
U.
Tallarek
, “
Coarse- and fine-grid numerical behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere packings
,”
J. Comput. Phys.
281
,
708
742
(
2015
).
50.
D.
d’Humières
and
I.
Ginzburg
, “
Viscosity independent numerical errors for lattice Boltzmann models: From recurrence equations to “magic” collision numbers
,”
Comput. Math. Appl.
58
,
823
840
(
2009
).
51.
P.
Salamon
,
D.
Fernàndez-Garcia
, and
J. J.
Gómez-Hernández
, “
A review and numerical assessment of the random walk particle tracking method
,”
J. Contam. Hydrol.
87
,
277
305
(
2006
).
52.
F.
Delay
,
P.
Ackerer
, and
C.
Danquigny
, “
Simulating solute transport in porous or fractured formations using random walk particle tracking
,”
Vadose Zone J.
4
,
360
379
(
2005
).
53.
J. A.
Rudnick
and
G. D.
Gaspari
,
Elements of the Random Walk: An Introduction for Advanced Students and Researchers
(
Cambridge University Press
,
2004
).
54.
I. M.
Mazzitelli
,
F.
Toschi
, and
A. S.
Lanotte
, “
An accurate and efficient Lagrangian sub-grid model
,”
Phys. Fluids
26
,
095101
(
2014
).
55.
M.
Bechtold
,
J.
Vanderborght
,
O.
Ippisch
, and
H.
Vereecken
, “
Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents
,”
Water Resour. Res.
47
,
W10526
, (
2011
).
56.
A.
Daneyko
,
D.
Hlushkou
,
V.
Baranau
,
S.
Khirevich
,
A.
Seidel-Morgenstern
, and
U.
Tallarek
, “
Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient
,”
J. Chromatogr. A
1407
,
139
156
(
2015
).
57.
P.
Szymczak
and
A. J. C.
Ladd
, “
Boundary conditions for stochastic solutions of the convection–diffusion equation
,”
Phys. Rev. E
68
,
036704
(
2003
).
58.
S.
Khirevich
, “
High-performance computing of flow, diffusion, and hydrodynamic dispersion in random sphere packings
,” Ph.D. thesis,
Philipps-Universität Marburg
,
Germany
,
2010
.
59.
E. J.
Scott
,
L. H.
Tung
, and
H. G.
Drickamer
, “
Diffusion through an interface
,”
J. Chem. Phys.
19
,
1075
1078
(
1951
).
60.
T. A.
Driscoll
,
N.
Hale
, and
L. N.
Trefethen
,
Chebfun Guide
(
Pafnuty Publications
,
2014
).
61.
C.
Agca
,
G.
Pope
, and
K.
Sepehrnoori
, “
Modelling and analysis of tracer flow in oil reservoirs
,”
J. Pet. Sci. Eng.
4
,
3
19
(
1990
).
62.
C. E.
Cooke
, “
Method of determining fluid saturations in reservoirs
,” U.S. patent US3590923 (
3 December 1969
).
63.
K. J.
Cunningham
,
M.
Sukop
,
H.
Huang
,
P. F.
Alvarez
,
H.
Allen Curran
,
R. A.
Renken
, and
J. F.
Dixon
, “
Prominence of ichnologically-influenced macroporosity in the karst Biscayne aquifer: Stratiform “super-K” zones
,”
Geol. Soc. Am. Bull.
121
,
164
180
(
2009
).
64.
S. C.
Schon
and
J. W.
Head
,
Super-Permeability Zones and the Formation of Outflow Channels on Mars
(
Lunar and Planetary Institute
,
League City, Texas
,
2007
).
65.
S. O.
Viig
,
H.
Juilla
,
P.
Renouf
,
R.
Kleven
,
B.
Krognes
,
O.
Dugstad
, and
O.
Huseby
, “
Application of a new class of chemical tracers to measure oil saturation in partitioning interwell tracer tests
,” in
SPE International Symposium on Oilfield Chemistry, The Woodlands, Texas, 8–10 April 2013
(
Society of Petroleum Engineers
,
Woodlands, Texas
2013
), SPE-164059-MS.
66.
R. S.
Maier
,
D. M.
Kroll
,
R. S.
Bernard
,
S. E.
Howington
,
J. F.
Peters
, and
H. T.
Davis
, “
Pore-scale simulation of dispersion
,”
Phys. Fluids
12
,
2065
2079
(
2000
).
You do not currently have access to this content.