This work reports on the first three-dimensional viscoelastic dough kneading simulation performed in a spiral kneader. Unstructured tetrahedral grids were generated using ICEM CFD 17.1. Viscoelastic volume-of-fluid simulations were performed using OpenFOAM v.4.0 in combination with the RheoTool package v.2.0. The White-Metzner model with a Bird-Carreau type of shear-rate dependency of the viscosity and relaxation time was utilized to describe the rheology of the dough matrix. We validated our numerical method by simulating the viscoelastic rod climbing benchmark problem in a cylindrical bowl. The temporal evolution of the dough surface was compared with screenshots obtained with a high-speed video camera during laboratory kneading. We found that the curvature of the free surface matches the experimental data well. With our numerical approach, we were able to predict the formation, extension, and breakup of dough pockets. The dough is convected around the inner stationary rod by the rotation of the outer cylindrical bowl, whereas the spiral arm located in between these two parts produces spiral flow patterns. Vertical mixing is not as good as radial mixing and may be enhanced by utilizing two spiral arms similar to hand kneading. Industrial kneading geometries and processes may be further optimized by performing such types of simulations.

1.
B.
Schiedt
,
A.
Baumann
,
B.
Conde-Petit
, and
T. A.
Vilgis
, “
Short-and long-range interactions governing the viscoelastic properties during wheat dough and model dough development
,”
J. Texture Stud.
44
(
4
),
317
332
(
2013
).
2.
M.
Keentok
,
M. P.
Newberry
,
P.
Gras
,
F.
Bekes
, and
R. I.
Tanner
, “
The rheology of bread dough made from four commercial flours
,”
Rheol. Acta
41
(
1-2
),
173
179
(
2002
).
3.
S.
Uthayakumaran
,
M.
Newberry
,
N.
Phan-Thien
, and
R.
Tanner
, “
Small and large strain rheology of wheat gluten
,”
Rheol. Acta
41
(
1-2
),
162
172
(
2002
).
4.
T. S. K.
Ng
and
G. H.
McKinley
, “
Power law gels at finite strains: The nonlinear rheology of gluten gels
,”
J. Rheol.
52
(
2
),
417
449
(
2008
).
5.
T. S. K.
Ng
,
G. H.
McKinley
, and
R. H.
Ewoldt
, “
Large amplitude oscillatory shear flow of gluten dough: A model power-law gel
,”
J. Rheol.
55
(
3
),
627
654
(
2011
).
6.
R.
Upadhyay
,
D.
Ghosal
, and
A.
Mehra
, “
Characterization of bread dough: Rheological properties and microstructure
,”
J. Food Eng.
109
(
1
),
104
113
(
2012
).
7.
M.
Jekle
and
T.
Becker
, “
Dough microstructure: Novel analysis by quantification using confocal laser scanning microscopy
,”
Food Res. Int.
44
(
4
),
984
991
(
2011
).
8.
I.
Bernklau
,
L.
Lucas
,
M.
Jekle
, and
T.
Becker
, “
Protein network analysis—A new approach for quantifying wheat dough microstructure
,”
Food Res. Int.
89
,
812
819
(
2016
).
9.
Y. R.
Kim
,
P.
Cornillon
,
O. H.
Campanella
,
R. L.
Stroshine
,
S.
Lee
, and
J. Y.
Shim
, “
Small and large deformation rheology for hard wheat flour dough as influenced by mixing and resting
,”
J. Food Sci.
73
(
1
),
E1
E8
(
2008
).
10.
K. M.
Lindborg
,
C.
Trägårdh
,
A. C.
Eliasson
, and
P.
Dejmek
, “
Time-resolved shear viscosity of wheat flour doughs—Effect of mixing, shear rate, and resting on the viscosity of doughs of different flours
,”
Cereal Chem.
74
(
1
),
49
55
(
1997
).
11.
G.
Yazar
,
O. C.
Duvarci
,
S.
Tavman
, and
J. L.
Kokini
, “
Effect of mixing on LAOS properties of hard wheat flour dough
,”
J. Food Eng.
190
,
195
204
(
2016
).
12.
K.
Kansou
,
H.
Chiron
,
G.
Della Valle
,
A.
Ndiaye
, and
P.
Roussel
, “
Predicting the quality of wheat flour dough at mixing using an expert system
,”
Food Res. Int.
64
,
772
782
(
2014
).
13.
F.
Oestersötebier
,
P.
Traphöner
,
F.
Reinhart
,
S.
Wessels
, and
A.
Trächtler
, “
Design and implementation of intelligent control software for a dough kneader
,”
Proc. Technol.
26
,
473
482
(
2016
).
14.
F. A.
Perez Alvarado
,
M. A.
Hussein
, and
T.
Becker
, “
A vision system for surface homogeneity analysis of dough based on the grey level co-occurrence matrix (GLCM) for optimum kneading time prediction
,”
J. Food Process Eng.
39
(
2
),
166
177
(
2016
).
15.
S.
Yang
,
Y.
Sun
,
L.
Zhang
, and
J. W.
Chew
, “
Numerical study on the axial segregation dynamics of a binary-size granular mixture in a three-dimensional rotating drum
,”
Phys. Fluids
29
(
10
),
103302
(
2017
).
16.
B.
Xu
,
Y.
Liu
,
L.
He
,
L.
Turng
, and
C.
Liu
, “
Effect of centerline distance on mixing of a non-Newtonian fluid in a cavity with asymmetric rotors
,”
Phys. Fluids
31
(
2
),
021205
(
2019
).
17.
H.
Vafadar-Moradi
and
J. M.
Floryan
, “
On the mixing enhancement in annular flows
,”
Phys. Fluids
29
,
024106
(
2017
).
18.
O.
Baskan
,
H.
Rajaei
,
M. F. M.
Speetjens
, and
H. J. H.
Clercx
, “
Scalar transport in inline mixers with spatially periodic flows
,”
Phys. Fluids
29
(
1
),
013601
(
2017
).
19.
M. F. M.
Speetjens
,
E. A.
Demissie
,
G.
Metcalfe
, and
H. J. H.
Clercx
, “
Lagrangian transport characteristics of a class of three-dimensional inline-mixing flows with fluid inertia
,”
Phys. Fluids
26
(
11
),
113601
(
2014
).
20.
T. R. G.
Jongen
,
M. V.
Bruschke
, and
J. G.
Dekker
, “
Analysis of dough kneaders using numerical flow simulations
,”
Cereal Chem.
80
(
4
),
383
389
(
2003
).
21.
I.
Litovchenko
,
M.
Luchian
,
S.
Stefanov
, and
C.
Csatlos
, “
Numerical modeling and simulation of bread dough mixing using concept of computational fluid dynamics (CFD)
,” in
Proceedings of 5th International Mechanical Engineering Forum
(
Czech University of Life Sciences Prague
,
2012
), pp.
584
590
.
22.
K. S.
Sujatha
and
M. F.
Webster
, “
Modelling three-dimensional rotating flows in cylindrical-shaped vessels
,”
Int. J. Numer. Methods Fluids
43
(
9
),
1067
1079
(
2003
).
23.
D. M.
Binding
,
M. A.
Couch
,
K. S.
Sujatha
, and
M. F.
Webster
, “
Experimental and numerical simulation of dough kneading in filled geometries
,”
J. Food Eng.
58
(
2
),
111
123
(
2003
).
24.
K. S.
Sujatha
,
M. F.
Webster
,
D. M.
Binding
, and
M. A.
Couch
, “
Modelling and experimental studies of rotating flows in part-filled vessels: Wetting and peeling
,”
J. Food Eng.
57
(
1
),
67
79
(
2003
).
25.
R. I.
Tanner
,
F.
Qi
, and
S. C.
Dai
, “
Bread dough rheology and recoil: I. Rheology
,”
J. Non-Newt. Fluid Mech.
148
(
1-3
),
33
40
(
2008
).
26.
P.
Šćepanović
,
Th. B.
Goudoulas
, and
N.
Germann
, “
Numerical investigation of microstructural damage during kneading of wheat dough
,”
Food Struct.
16
,
8
16
(
2018
).
27.
M.
Dhanasekharan
,
H.
Huang
, and
J. L.
Kokini
, “
Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner models
,”
J. Texture Stud.
30
(
6
),
603
623
(
1999
).
28.
M.
Dhanasekharan
,
C. F.
Wang
, and
J. L.
Kokini
, “
Use of nonlinear differential viscoelastic models to predict the rheological properties of gluten dough
,”
J. Food Process Eng.
24
(
3
),
193
216
(
2001
).
29.
Y.
Ide
and
J. L.
White
, “
Investigation of failure during elongational flow of polymer melts
,”
J. Non-Newt. Fluid Mech.
2
(
3
),
281
298
(
1977
).
30.
A.
Souvaliotis
and
A. N.
Beris
, “
An extended White–Metzner viscoelastic fluid model based on an internal structural parameter
,”
J. Rheol.
36
(
2
),
241
271
(
1992
).
31.
Y.
Wang
,
M.
Do-Quang
, and
G.
Amberg
, “
Viscoelastic droplet dynamics in a Y-shaped capillary channel
,”
Phys. Fluids
28
(
3
),
033103
(
2016
).
32.
R.
Comminal
,
F.
Pimenta
,
J. H.
Hattel
,
M. A.
Alves
, and
J.
Spangenberg
, “
Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods
,”
J. Non-Newt. Fluid Mech.
252
,
1
18
(
2018
).
33.
C.
Wang
,
S.
Dai
, and
R. I.
Tanner
, “
On the compressibility of bread dough
,”
Korea Aust. Rheol. J.
18
(
3
),
127
131
(
2006
).
34.
H. A.
Barnes
and
G. P.
Roberts
, “
A simple empirical model describing the steady-state shear and extensional viscosities of polymer melts
,”
J. Non-Newt. Fluid Mech.
44
,
113
126
(
1992
).
35.
B. J.
Dobraszczyk
, “
The rheological basis of dough stickiness
,”
J. Texture Stud.
28
(
2
),
139
162
(
1997
).
36.
H.
Kumagai
,
B. H.
Lee
,
H.
Kumagai
, and
T.
Yano
, “
Critical radius and time course of expansion of an isolated bubble in wheat flour dough under temperature rise
,”
Agric. Biol. Chem.
55
(
4
),
1081
1087
(
1991
).
37.
F.
Pimenta
and
M. A.
Alves
, Rheotool, accessed at https://github.com/fppimenta/rheoTool,
2018
.
38.
F.
Habla
,
H.
Marschall
,
O.
Hinrichsen
,
L.
Dietsche
,
H.
Jasak
, and
J. L.
Favero
, “
Numerical simulation of viscoelastic two-phase flows using openFOAM®
,”
Chem. Eng. Sci.
66
(
22
),
5487
5496
(
2011
).
39.
G. S.
Beavers
and
D. D.
Joseph
, “
The rotating rod viscometer
,”
J. Fluid Mech.
69
(
3
),
475
511
(
1975
).
40.
X. L.
Luo
, “
Numerical simulation of Weissenberg phenomena—The rod-climbing of viscoelastic fluids
,”
Comput. Methods Appl. Mech. Eng.
180
(
3-4
),
393
412
(
1999
).
41.
R. A.
Figueiredo
,
C. M.
Oishi
,
A. M.
Afonso
,
I. V. M.
Tasso
, and
J. A.
Cuminato
, “
A two-phase solver for complex fluids: Studies of the Weissenberg effect
,”
Int. J. Multiphase Flow
84
,
98
115
(
2016
).

Supplementary Material

You do not currently have access to this content.