A continuum-level model for nonisothermal polymer crystallization following a complex flow is presented, along with a fundamental rule that may be employed to determine if the flow will influence the ensuing crystallization dynamics. This rule is based on two dimensionless parameters: the (Rouse) Weissenberg number and an inverse Deborah number defined by the ratio between the time taken to cool and the melting point vs the stretch relaxation time, which determines the time available for flow-enhanced crystallization. Moreover, we show how the time to reach the melting point can be derived semianalytically and expressed in terms of the processing conditions in the case of pipe flow—ubiquitous in polymer processing. While the full numerical model is required to quantitatively predict induction times and spherulite-size distributions, the proposed fundamental rule may be used practically to ensure, or eliminate, flow-enhanced structures by controlling the processing conditions or material properties. We discuss how flow-enhanced structures may be revealed only after postprocessing annealing and finally examine previous works that have successfully applied the model to extrusion-based three-dimensional printing.

1.
E.
Piorkowska
and
G. C.
Rutledge
,
Handbook of Polymer Crystallization
(
John Wiley & Sons
,
2013
).
2.
H.
Janeschitz-Kriegl
and
E.
Ratajski
, “
Some fundamental aspects of the kinetics of flow-induced crystallization of polymers
,”
Colloid Polym. Sci.
288
,
1525
1537
(
2010
).
3.
J.
Way
,
J.
Atkinson
, and
J.
Nutting
, “
The effect of spherulite size on the fracture morphology of polypropylene
,”
J. Mater. Sci.
9
,
293
299
(
1974
).
4.
P. C.
Roozemond
,
M.
van Drongelen
,
Z.
Ma
,
M. A.
Hulsen
, and
G. W.
Peters
, “
Modeling flow-induced crystallization in isotactic polypropylene at high shear rates
,”
J. Rheol.
59
,
613
642
(
2015
).
5.
F. J. M. F.
Custódio
,
R. J. A.
Steenbakkers
,
P. D.
Anderson
,
G. W. M.
Peters
, and
H. E. H.
Meijer
, “
Model development and validation of crystallization behavior in injection molding prototype flows
,”
Macromol. Theory Simul.
18
,
469
494
(
2009
).
6.
P. C.
Roozemond
,
T. B.
van Erp
, and
G. W.
Peters
, “
Flow-induced crystallization of isotactic polypropylene: Modeling formation of multiple crystal phases and morphologies
,”
Polymer
89
,
69
80
(
2016
).
7.
R. S.
Graham
, “
Understanding flow-induced crystallization in polymers: A perspective on the role of molecular simulations
,”
J. Rheol.
63
,
203
214
(
2019
).
8.
R.
Pantani
,
I.
Coccorullo
,
V.
Volpe
, and
G.
Titomanlio
, “
Shear-induced nucleation and growth in isotactic polypropylene
,”
Macromolecules
43
,
9030
9038
(
2010
).
9.
C.
Hadinata
,
C.
Gabriel
,
M.
Ruellman
, and
H.
Laun
, “
Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution
,”
J. Rheol.
49
,
327
349
(
2005
).
10.
S.
Coppola
,
L.
Balzano
,
E.
Gioffredi
,
P. L.
Maffettone
, and
N.
Grizzuti
, “
Effects of the degree of undercooling on flow induced crystallization in polymer melts
,”
Polymer
45
,
3249
3256
(
2004
).
11.
E. E. B.
White
,
H. H.
Winter
, and
J. P.
Rothstein
, “
Extensional-flow-induced crystallization of isotactic polypropylene
,”
Rheol. Acta
51
,
303
314
(
2012
).
12.
R. H.
Somani
,
B. S.
Hsiao
,
A.
Nogales
,
S.
Srinivas
,
A. H.
Tsou
,
I.
Sics
,
F. J.
Balta-Calleja
, and
T. A.
Ezquerra
, “
Structure development during shear flow-induced crystallization of i-PP: In-situ small-angle x-ray scattering study
,”
Macromolecules
33
,
9385
9394
(
2000
).
13.
R.
Toukhtarian
,
S. G.
Hatzikiriakos
,
H.
Atsbha
, and
B.
Boulet
, “
Modeling polymer extrusion with varying die gap using Arbitrary Lagrangian Eulerian (ALE) method
,”
Phys. Fluids
30
,
093103
(
2018
).
14.
V. K.
Konaganti
,
M.
Derakhshandeh
,
M.
Ebrahimi
,
E.
Mitsoulis
, and
S. G.
Hatzikiriakos
, “
Non-isothermal extrudate swell
,”
Phys. Fluids
28
,
123101
(
2016
).
15.
R.
Mollaabbasi
,
E.
Behzadfar
, and
S.
Taghavi
, “
A simplified semi-analytical model for the filling and cooling process in plastic molding
,”
Phys. Fluids
31
,
063105
(
2019
).
16.
P.
Poungthong
,
A. J.
Giacomin
,
C.
Saengow
,
C.
Kolitawong
,
H.-C.
Liao
, and
S.-C.
Tseng
, “
Nonlinear core deflection in injection molding
,”
Phys. Fluids
30
,
053102
(
2018
).
17.
A. K.
Doufas
and
A. J.
McHugh
, “
Simulation of film blowing including flow-induced crystallization
,”
J. Rheol.
45
,
1085
1104
(
2001
).
18.
T.
Barborik
and
M.
Zatloukal
, “
Effect of heat transfer coefficient, draw ratio, and die exit temperature on the production of flat polypropylene membranes
,”
Phys. Fluids
31
,
053101
(
2019
).
19.
J.
Drabek
and
M.
Zatloukal
, “
Meltblown technology for production of polymeric microfibers/nanofibers: A review
,”
Phys. Fluids
31
,
091301
(
2019
).
20.
E.
Bertevas
,
J.
Férec
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process
,”
Phys. Fluids
30
,
103103
(
2018
).
21.
J.
Baert
,
P. V.
Puyvelde
, and
F.
Langouche
, “
Flow-induced crystallization of PB-1: From the low shear rate region up to processing rates
,”
Macromolecules
39
,
9215
9222
(
2006
).
22.
S.
Acierno
,
S.
Coppola
, and
N.
Grizzuti
, “
Effects of molecular weight distribution on the flow-enhanced crystallization of poly (1-butene)
,”
J. Rheol.
52
,
551
566
(
2008
).
23.
F. G.
Hamad
,
R. H.
Colby
, and
S. T.
Milner
, “
Onset of flow-induced crystallization kinetics of highly isotactic polypropylene
,”
Macromolecules
48
,
3725
3738
(
2015
).
24.
B.
Nazari
,
H.
Tran
,
B.
Beauregard
,
M.
Flynn-Hepford
,
D.
Harrell
,
S. T.
Milner
, and
R. H.
Colby
, “
Two distinct morphologies for semicrystalline isotactic polypropylene crystallized after shear flow
,”
Macromolecules
51
,
4750
4761
(
2018
).
25.
G.
Kumaraswamy
,
R. K.
Verma
, and
J. A.
Kornfield
, “
Novel flow apparatus for investigating shear-enhanced crystallization and structure development in semicrystalline polymers
,”
Rev. Sci. Instrum.
70
,
2097
2104
(
1999
).
26.
M.
Seki
,
D. W.
Thurman
,
J. P.
Oberhauser
, and
J. A.
Kornfield
, “
Shear-mediated crystallization of isotactic polypropylene: The role of long chain-long chain overlap
,”
Macromolecules
35
,
2583
2594
(
2002
).
27.
C.
McIlroy
and
R.
Graham
, “
Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts
,”
Addit. Manuf.
24
,
323
340
(
2018
).
28.
J. E.
Seppala
,
A. P.
Kotula
, and
C. R.
Snyder
,
Polymer-Based Additive Manufacturing: Recent Developments
, ACS Symposium Series (
American Chemical Society
,
2019
).
29.
D. A.
Nicholson
and
G. C.
Rutledge
, “
An assessment of models for flow-enhanced nucleation in an n-alkane melt by molecular simulation
,”
J. Rheol.
63
,
465
475
(
2019
).
30.
R. S.
Graham
and
P. D.
Olmsted
, “
Coarse-grained simulations of flow-induced nucleation in semicrystalline polymers
,”
Phys. Rev. Lett.
103
,
115702
(
2009
).
31.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1988
).
32.
A. E.
Likhtman
and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
33.
G. W.
Peters
,
L.
Balzano
, and
R. J.
Steenbakkers
, “
Flow-induced crystallization
,” in
Handbook of Polymer Crystallization
(
John Wiley & Sons
,
2013
), pp.
399
431
.
34.
M.
Avrami
, “
Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei
,”
J. Chem. Phys.
8
,
212
224
(
1940
).
35.
K.
Kishore
and
R.
Vasanthakumari
, “
A comprehensive review of the effect of pressure on polymer crystallization
,”
High Temp.—High Pressures
16
,
241
268
(
1984
).
36.
V.
Jadhao
and
M. O.
Robbins
, “
Probing large viscosities in glass-formers with nonequilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
7952
7957
(
2017
).
37.
A. E.
Likhtman
and
T. C.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
6343
(
2002
).
38.
A.
Likhtman
, https://reptate.readthedocs.io/, Reptate,
2019
.
39.
J.
Seo
,
H.
Takahashi
,
B.
Nazari
,
A. M.
Rhoades
,
R. P.
Schaake
, and
R. H.
Colby
, “
Isothermal flow-induced crystallization of polyamide 66 melts
,”
Macromolecules
51
,
4269
4279
(
2018
).
You do not currently have access to this content.