The stress singularity for Phan-Thien–Tanner (PTT) and Giesekus viscoelastic fluids is determined for extrudate swell (commonly termed die swell). In the presence of a Newtonian solvent viscosity, the solvent stress dominates the polymer stresses local to the contact point between the solid (no-slip) surface inside the die and the free (slip) surface outside the die. The velocity field thus vanishes like rλ0, where r is the radial distance from the contact point and λ0 is the smallest Newtonian eigenvalue (dependent upon the angle of separation between the solid and free surfaces). The solvent stress thus behaves like r(1λ0) and dominates the polymer stresses, which are like r4(1λ0)/(5+λ0) for PTT and r(1λ0)(3λ0)/4 for Giesekus. The polymer stresses require boundary layers at both the solid and free surfaces, the thicknesses of which are derived. These results do not hold for the Oldroyd-B fluid.

1.
J. R.
Pearson
,
Mechanics of Polymer Processing
(
Springer Netherlands
,
1985
).
2.
R. G.
Larson
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
3.
M. M.
Denn
, “
Extrusion instabilities and wall slip
,”
Annu. Rev. Fluid Mech.
33
(
1
),
265
287
(
2001
).
4.
D. B.
Harmon
, “
Drop sizes from low speed jets
,”
J. Franklin Inst.
259
(
6
),
519
522
(
1955
).
5.
S.
Middleman
and
J.
Gavis
, “
Expansion and contraction of capillary jets of Newtonian liquids
,”
Phys. Fluids
4
(
3
),
355
359
(
1961
).
6.
S. L.
Goren
and
S.
Wronski
, “
The shape of low-speed capillary jets of Newtonian liquids
,”
J. Fluid Mech.
25
(
1
),
185
198
(
1966
).
7.
J.
Batchelor
,
J. P.
Berry
, and
F.
Horsfall
, “
Die swell in elastic and viscous fluids
,”
Polymer
14
(
7
),
297
299
(
1973
).
8.
R. L.
Gear
,
M.
Keentok
,
J. F.
Milthorpe
, and
R. I.
Tanner
, “
The shape of low Reynolds number jets
,”
Phys. Fluids
26
(
1
),
7
9
(
1983
).
9.
W. W.
Graessley
,
S. D.
Glasscock
, and
R. L.
Crawley
, “
Die swell in molten polymers
,”
Trans. Soc. Rheol.
14
(
4
),
519
544
(
1970
).
10.
L. A.
Utracki
,
Z.
Bakerdjian
, and
M. R.
Kamal
, “
A method for the measurement of the true die swell of polymer melts
,”
J. Appl. Polym. Sci.
19
(
2
),
481
501
(
1975
).
11.
D. C.
Huang
and
J. L.
White
, “
Extrudate swell from slit and capillary dies: An experimental and theoretical study
,”
Polym. Eng. Sci.
19
(
9
),
609
616
(
1979
).
12.
S.
Richardson
, “
A ‘stick-slip’ problem related to the motion of a free jet at low Reynolds numbers
,”
Math. Proc. Cambridge Philos. Soc.
67
(
2
),
477
489
(
1970
).
13.
R. I.
Tanner
and
X.
Huang
, “
Stress singularities in non-Newtonian stick-slip and edge flows
,”
J. Non-Newtonian Fluid Mech.
50
(
2
),
135
160
(
1993
).
14.
L.
Sturges
, “
Die swell: The separation of the free surface
,”
J. Non-Newtonian Fluid Mech.
6
(
2
),
155
159
(
1979
).
15.
M.
Zidan
, “
Zur rheologie des spinnprozesses
,”
Rheol. Acta
8
,
89
123
(
1969
).
16.
S. A.
Trogdon
and
D. D.
Joseph
, “
The stick-slip problem for a round jet
,”
Rheol. Acta
19
,
404
420
(
1980
).
17.
C. J.
Coleman
, “
A note on the stick-slip and die-swell problems for a second-order fluid
,”
J. Non-Newtonian Fluid Mech.
3
(
3
),
288
292
(
1978
).
18.
L. D.
Sturges
, “
A theoretical study of extrudate swell
,”
J. Non-Newtonian Fluid Mech.
9
(
3
),
357
378
(
1981
).
19.
S.
Richardson
, “
The die swell phenomenon
,”
Rheol. Acta
9
,
193
199
(
Apr 1970
).
20.
J.
Gavis
and
M.
Modan
, “
Expansion and contraction of jets of Newtonian liquids in air: Effect of tube length
,”
Phys. Fluids
10
(
3
),
487
497
(
1967
).
21.
D. D.
Joseph
, “
Slow motion and viscometric motion; stability and bifurcation of the rest state of a simple fluid
,”
Arch. Ration. Mech. Anal.
56
,
99
157
(
1974
).
22.
A. S.
Lodge
,
Elastic Liquids: An Introductory Vector Treatment of Finite-Strain Polymer Rheology
(
Academic Press
,
1964
).
23.
A. B.
Metzner
,
W. T.
Houghton
,
R. A.
Sailor
, and
J. L.
White
, “
A method for the measurement of normal stresses in simple shearing flow
,”
Trans. Soc. Rheol.
5
(
1
),
133
147
(
1961
).
24.
J. C.
Slattery
and
W. R.
Schowalter
, “
Effect of surface tension in the measurement of the average normal stress at the exit of a capillary tube through an analysis of the capillary jet
,”
J. Appl. Polym. Sci.
8
(
5
),
1941
1947
(
1964
).
25.
J. M.
Davies
,
J. F.
Hutton
, and
K.
Walters
, “
Theory for normal stresses in slits and capillaries
,”
J. Phys. D: Appl. Phys.
6
(
18
),
2259
2266
(
1973
).
26.
J. M.
Davies
,
J. F.
Hutton
, and
K.
Walters
, “
A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane
,”
J. Non-Newtonian Fluid Mech.
3
(
2
),
141
160
(
1977
).
27.
D. V.
Boger
and
M. M.
Denn
, “
Capillary and slit methods of normal stress measurements
,”
J. Non-Newtonian Fluid Mech.
6
(
3
),
163
185
(
1980
).
28.
R. R.
Huilgol
, “
Some qualitative and quantitative features of die swell
,”
Polym. Eng. Sci.
18
(
8
),
643
648
(
1978
).
29.
R. I.
Tanner
, “
Die-swell reconsidered: Some numerical solutions using a finite element program
,”
Appl. Polym. Symp.
20
,
201
208
(
1973
).
30.
R. E.
Nickell
,
R. I.
Tanner
, and
B.
Caswell
, “
The solution of viscous incompressible jet and free-surface flows using finite-element methods
,”
J. Fluid Mech.
65
(
1
),
189
206
(
1974
).
31.
K. R.
Reddy
and
R. I.
Tanner
, “
Finite element solution of viscous jet flows with surface tension
,”
Comput. Fluids
6
(
2
),
83
91
(
1978
).
32.
M. J.
Crochet
and
R.
Keunings
, “
Die swell of a Maxwell fluid: numerical prediction
,”
J. Non-Newtonian Fluid Mech.
7
(
2-3
),
199
212
(
1980
).
33.
P.
Chang
,
T. W.
Patten
, and
B. A.
Finlayson
, “
Collocation and galerkin finite element methods for viscoelastic fluid flow—II. Die swell problems with a free surface
,”
Comput. Fluids
7
(
4
),
285
293
(
1979
).
34.
B. J.
Omodei
, “
Computer solutions of a plane Newtonian jet with surface tension
,”
Comput. Fluids
7
(
2
),
79
96
(
1979
).
35.
B. J.
Omodei
, “
On the die-swell of an axisymmetric Newtonian jet
,”
Comput. Fluids
8
(
3
),
275
289
(
1980
).
36.
M. J.
Crochet
and
R.
Keunings
, “
Finite element analysis of die swell of a highly elastic fluid
,”
J. Non-Newtonian Fluid Mech.
10
(
3
),
339
356
(
1982
).
37.
M. B.
Bush
,
J. F.
Milthorpe
, and
R. I.
Tanner
, “
Finite element and boundary element methods for extrusion computations
,”
J. Non-Newtonian Fluid Mech.
16
(
1
),
37
51
(
1984
).
38.
J.
Clermont
and
M.
Normandin
, “
Numerical simulation of extrudate swell for Oldroyd-B fluids using the stream-tube analysis and a streamline approximation
,”
J. Non-Newtonian Fluid Mech.
50
(
2
),
193
215
(
1993
).
39.
S.
Tanoue
,
T.
Kajiwara
,
Y.
Iemoto
, and
K.
Funatsu
, “
High Weissenberg number simulation of an annular extrudate swell using the differential type constitutive equation
,”
Polym. Eng. Sci.
38
(
3
),
409
419
(
1998
).
40.
G.
Karapetsas
and
J.
Tsamopoulos
, “
Steady extrusion of viscoelastic materials from an annular die
,”
J. Non-Newtonian Fluid Mech.
154
(
2
),
136
152
(
2008
).
41.
M.
Normandin
,
J.
Clermont
,
J.
Guillet
, and
C.
Raveyre
, “
Three-dimensional extrudate swell experimental and numerical study of a polyethylene melt obeying a memory-integral equation
,”
J. Non-Newtonian Fluid Mech.
87
(
1
),
1
25
(
1999
).
42.
G.
Russo
and
T. N.
Phillips
, “
Spectral element predictions of die-swell for Oldroyd-B fluids
,”
Comput. Fluids
43
(
1
),
107
118
(
2011
), part of special issue: Symposium on High Accuracy Flow Simulations. Special Issue Dedicated to Prof. Michel Deville.
43.
G.
Russo
and
T. N.
Phillips
, “
Numerical prediction of extrudate swell of branched polymer melts
,”
Rheol. Acta
49
(
6
),
657
676
(
2010
).
44.
V.
Ganvir
,
A.
Lele
,
R.
Thaokar
, and
B. P.
Gautham
, “
Prediction of extrudate swell in polymer melt extrusion using an Arbitrary Lagrangian Eulerian (ALE) based finite element method
,”
J. Non-Newtonian Fluid Mech.
156
(
1
),
21
28
(
2009
).
45.
Y.
Cao
,
X.
Ren
,
X.
Guo
,
M.
Wang
,
Q.
Wang
,
X.
Xu
, and
X.
Yang
, “
A new method to simulate free surface flows for viscoelastic fluid
,”
Adv. Mater. Sci. Eng.
2015
,
159831
.
46.
J.
Fang
,
R. G.
Owens
,
L.
Tacher
, and
A.
Parriaux
, “
A numerical study of the SPH method for simulating transient viscoelastic free surface flows
,”
J. Non-Newtonian Fluid Mech.
139
(
1
),
68
84
(
2006
).
47.
A.
Rafiee
,
M. T.
Manzari
, and
M.
Hosseini
, “
An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows
,”
Int. J. Non-Linear Mech.
42
(
10
),
1210
1223
(
2007
).
48.
X.
Xu
,
J.
Ouyang
,
T.
Jiang
, and
Q.
Li
, “
Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method
,”
J. Non-Newtonian Fluid Mech.
177-178
,
109
120
(
2012
).
49.
M. F.
Tomé
,
B.
Duffy
, and
S.
McKee
, “
A numerical technique for solving unsteady non-Newtonian free surface flows
,”
J. Non-Newtonian Fluid Mech.
62
(
1
),
9
34
(
1996
).
50.
M. F.
Tomé
,
A. C.
Filho
,
J. A.
Cuminato
,
N.
Mangiavacchi
, and
S.
Mckee
, “
GENSMAC3D: A numerical method for solving unsteady three-dimensional free surface flows
,”
Int. J. Numer. Methods Fluids
37
(
7
),
747
796
(
2001
).
51.
M. F.
Tomé
,
L.
Grossi
,
A.
Castelo
,
J. A.
Cuminato
,
N.
Mangiavacchi
,
V. G.
Ferreira
,
F. S.
de Sousa
, and
S.
McKee
, “
A numerical method for solving three-dimensional generalized Newtonian free surface flows
,”
J. Non-Newtonian Fluid Mech.
123
(
2
),
85
103
(
2004
).
52.
M. F.
Tomé
,
A.
Castelo
,
V. G.
Ferreira
, and
S.
McKee
, “
A finite difference technique for solving the Oldroyd-B model for 3D-unsteady free surface flows
,”
J. Non-Newtonian Fluid Mech.
154
(
2
),
179
206
(
2008
).
53.
M. F.
Tomé
,
G. S.
Paulo
,
F. T.
Pinho
, and
M. A.
Alves
, “
Numerical solution of the PTT constitutive equation for unsteady three-dimensional free surface flows
,”
J. Non-Newtonian Fluid Mech.
165
(
5
),
247
262
(
2010
).
54.
G.
Mompean
,
L.
Thais
,
M. F.
Tomé
, and
A.
Castelo
, “
Numerical prediction of three-dimensional time-dependent viscoelastic extrudate swell using differential and algebraic models
,”
Comput. Fluids
44
(
1
),
68
78
(
2011
).
55.
R. A.
Figueiredo
,
C. M.
Oishi
,
J. A.
Cuminato
, and
M. A.
Alves
, “
Three-dimensional transient complex free surface flows: Numerical simulation of XPP fluid
,”
J. Non-Newtonian Fluid Mech.
195
,
88
98
(
2013
).
56.
M. F.
Tomé
,
J.
Bertoco
,
C. M.
Oishi
,
M. S. B.
Araujo
,
D.
Cruz
,
F. T.
Pinho
, and
M.
Vynnycky
, “
A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows
,”
J. Comput. Phys.
311
,
114
141
(
2016
).
57.
J. L.
Favero
,
A. R.
Secchi
,
N. S. M.
Cardozo
, and
H.
Jasak
, “
Viscoelastic fluid analysis in internal and in free surface flows using the software OpenFOAM
,”
Comput. Chem. Eng.
34
(
12
),
1984
1993
(
2010
).
58.
R.
Comminal
,
F.
Pimenta
,
J. H.
Hattel
,
M. A.
Alves
, and
J.
Spangenberg
, “
Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods
,”
J. Non-Newtonian Fluid Mech.
252
(
C
),
1
18
(
2018
).
59.
J. P.
Berry
and
J.
Batchelor
, “
Application of the momentum balance theory of die-swell to polymer melts
,”
Res. Rep.
184
(
1970
).
60.
S.
Richardson
, “
A ‘stick-slip’ problem related to the motion of a free jet at low Reynolds numbers
,”
Math. Proc. Cambridge Philos. Soc.
67
(
2
),
477
489
(
1970
).
61.
P.
André
and
J.
Clermont
, “
Numerical simulation of the die swell problem of a Newtonian fluid by using the concept of stream function and a local analysis of the singularity at the corner
,”
J. Non-Newtonian Fluid Mech.
23
,
335
354
(
1987
).
62.
R. I.
Tanner
, “
A theory of die-swell revisited
,”
J. Non-Newtonian Fluid Mech.
129
(
2
),
85
87
(
2005
).
63.
N.
Phan-Thien
and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
(
4
),
353
365
(
1977
).
64.
N.
Phan-Thien
, “
A nonlinear network viscoelastic model
,”
J. Rheol.
22
(
3
),
259
283
(
1978
).
65.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
(
1
),
69
109
(
1982
).
66.
D. H.
Michael
, “
The separation of a viscous liquid at a straight edge
,”
Mathematika
5
(
1
),
82
84
(
1958
).
67.
H. K.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
(
1
),
1
18
(
1964
).
68.
G. C.
Georgiou
,
L. G.
Olson
,
W. W.
Schultz
, and
S.
Sagan
, “
A singular finite element for Stokes flow: The stick-slip problem
,”
Int. J. Numer. Methods Fluids
9
(
11
),
1353
1367
(
1989
).
69.
G. C.
Georgiou
,
W. W.
Schultz
, and
L. G.
Olson
,
Singular Finite Elements for Fluid Flow Problems with Stress Singularities
(
Springer Netherlands
,
Dordrecht
,
1990
), pp.
174
176
.
70.
M.
Elliotis
,
G.
Georgiou
, and
C.
Xenophontos
, “
Solution of the planar Newtonian stick-slip problem with the singular function boundary integral method
,”
Int. J. Numer. Methods Fluids
48
(
9
),
1001
1021
(
2005
).
71.
T. R.
Salamon
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Local similarity solutions for the stress field of an Oldroyd-B fluid in the partial-slip/slip flow
,”
Phys. Fluids
9
(
8
),
2191
2209
(
1997
).
72.
J. D.
Evans
, “
Stick-slip and slip-stick singularities of the Phan-Thien–Tanner fluid
,”
J. Non-Newtonian Fluid Mech.
199
,
12
19
(
2013
).
73.
J. D.
Evans
, “
Stick-slip singularity of the Giesekus fluid
,”
J. Non-Newtonian Fluid Mech.
222
,
24
33
(
2015
), part of special issue: Rheometry (and General Rheology): Festschrift dedicated to Professor K. Walters FRS on the occasion of his 80th birthday.
74.
J. D.
Evans
,
I. L.
Palhares Junior
, and
C. M.
Oishi
, “
Stresses of PTT, Giesekus, and Oldroyd-B fluids in a Newtonian velocity field near the stick-slip singularity
,”
Phys. Fluids
29
(
12
),
121604
(
2017
).
75.
T. R.
Salamon
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
The role of surface tension in the dominant balance in the die swell singularity
,”
Phys. Fluids
7
(
10
),
2328
2344
(
1995
).
76.
H.
Lugt
and
E.
Schwiderski
, “
Flows around dihedral angles. I. Eigenmotion analysis
,”
Proc. R. Soc. London, Ser. A
285
(
1402
),
382
399
(
1965
).
77.
E. J.
Hinch
, “
The flow of an Oldroyd fluid around a sharp corner
,”
J. Non-Newtonian Fluid Mech.
50
(
2
),
161
171
(
1993
).
78.
M.
Renardy
, “
How to integrate the upper convected Maxwell (UCM) stresses near a singularity (and maybe elsewhere, too)
,”
J. Non-Newtonian Fluid Mech.
52
(
1
),
91
95
(
1994
).
79.
J. M.
Rallison
and
E. J.
Hinch
, “
The flow of an Oldroyd fluid past a reentrant corner: The downstream boundary layer
,”
J. Non-Newtonian Fluid Mech.
116
,
141
162
(
2004
).
80.
M.
Renardy
, “
The high Weissenberg number limit of the UCM model and the Euler equations
,”
J. Non-Newtonian Fluid Mech.
69
(
2
),
293
301
(
1997
).
81.
F.
Pimenta
and
M. A.
Alves
, RheoTool, https://github.com/fppimenta/rheoTool,
2016
.
82.
S. S.
Deshpande
,
L.
Anumolu
, and
M. F.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
,
014016
(
2012
).
You do not currently have access to this content.