Rheological properties of gelled foods that may relate to the physics of the fluids in the swallowing process of complex food components are determined by ultrasonic spinning rheometry (USR) [T. Yoshida et al., “Efficacy assessments in ultrasonic spinning rheometry: Linear viscoelastic analysis on non-Newtonian fluids,” J. Rheol. 63, 503–517 (2019)]. Through rheological evaluations of thixotropic gelled food, the inaccuracies in standard rheometer data to capture the true-rheological property are discussed first with steady rotational and oscillatory tests; the inaccuracies arise from commonly existing problems that cannot be directly observed in standard rheometers (wall-slip, shear banding, shear localization, elastic instability, etc.). The results evaluated by standard rheometers would be related to the measurements being specific response, depending on the geometry of the measurement device. The USR test discussed here shows the potential to overcome these problems in the rheological evaluation of gelled foods and reflects the advantages offered by USR such as spatial, local, and oscillation cycle measurements; the results with the transient flow curve that has not previously been discussed can be usefully interpreted, and the stability of the food materials in the unsteady shear displayed is of great importance in understanding which rheology indicates the better texture.

1.
G.
Heirman
,
L.
Vandewalle
,
D.
Van Gemert
, and
O.
Wallevik
, “
Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer
,”
J. Non-Newtonian Fluid Mech.
150
,
93
103
(
2008
).
2.
Y. L.
Yeow
,
W. C.
Ko
, and
P. P.
Tang
, “
Solving the inverse problem of Couette viscometry by Tikhonov regularization
,”
J. Rheol.
44
,
1335
1351
(
2000
).
3.
C.
Ancey
, “
Solving the Couette inverse problem using a wavelet-vaguelette decomposition
,”
J. Rheol.
49
,
441
460
(
2005
).
4.
L. P.
Paduano
,
T.
Schweizer
,
C.
Carotenuto
,
J.
Vermant
, and
M.
Minale
, “
Rough geometries with viscoelastic Boger fluids: Predicting the apparent wall slip with a porous medium approach
,”
J. Rheol.
63
,
569
582
(
2019
).
5.
W.
Wolthers
,
M. H. G.
Duits
,
D.
van den Ende
, and
J.
Mellema
, “
Shear history dependence of the viscosity of aggregated colloidal dispersions
,”
J. Rheol.
40
,
799
811
(
1996
).
6.
P.
Fischer
,
E. K.
Wheeler
, and
G. G.
Fuller
, “
Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution
,”
Rheol. Acta
41
,
35
44
(
2002
).
7.
T.
Divoux
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Annu. Rev. Fluid Mech.
48
,
81
103
(
2016
).
8.
R.
Artoni
and
P.
Richard
, “
Torsional shear flow of granular materials: Shear localization and minimum energy principle
,”
Comput. Particle Mech.
5
,
3
12
(
2018
).
9.
O.
Nechyporchuk
,
M. N.
Belgacem
, and
F.
Pignon
, “
Rheological properties of micro-/nanofibrillated cellulose suspensions: Wall-slip and shear banding phenomena
,”
Carbohyd. Polym.
112
,
432
439
(
2014
).
10.
K.
Yang
and
W.
Yu
, “
Dynamic wall slip behavior of yield stress fluids under large amplitude oscillatory shear
,”
J. Rheol.
61
,
627
641
(
2017
).
11.
G. H.
McKinley
,
J. A.
Byars
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid
,”
J. Non-Newtonian Fluid Mech.
40
,
201
229
(
1991
).
12.
T.
Gallot
,
C.
Perge
,
V.
Grenard
,
M. A.
Fardin
,
N.
Taberlet
, and
S.
Manneville
, “
Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration
,”
Rev. Sci. Instrum.
84
,
045107
(
2013
).
13.
M. A.
Fardin
,
C.
Perge
,
L.
Casanellas
,
T.
Hollis
,
N.
Taberlet
,
J.
Ortín
,
S.
Lerouge
, and
S.
Manneville
, “
Flow instabilities in large amplitude oscillatory shear: A cautionary tale
,”
Rheol. Acta
53
,
885
898
(
2014
).
14.
M. A.
Fardin
,
L.
Casanellas
,
B.
Saint-Michel
,
S.
Manneville
, and
S.
Lerouge
, “
Shear-banding in wormlike micelles: Beware of elastic instabilities
,”
J. Rheol.
60
,
917
926
(
2016
).
15.
B.
Derakhshandeh
,
D.
Vlassopoulos
, and
S. G.
Hatzikiriakos
, “
Thixotropy, yielding and ultrasonic Doppler velocimetry in pulp fibre suspensions
,”
Rheol. Acta
51
,
201
214
(
2012
).
16.
B.
Ouriev
and
E. J.
Windhab
, “
Transient flow of highly concentrated suspensions investigated using the ultrasound velocity profiler–pressure difference method
,”
Meas. Sci. Technol.
14
,
1963
1972
(
2003
).
17.
T.
Shiratori
,
Y.
Tasaka
,
Y.
Oishi
, and
Y.
Murai
, “
Ultrasonic velocity profiling rheometry based on a widened circular Couette flow
,”
Meas. Sci. Technol.
26
,
085302
(
2015
).
18.
Ultrasonic Doppler Velocity Profiler for Fluid Flow
, Springer Science, edited by
Y.
Takeda
(
Springer
,
Tokyo
,
2012
).
19.
Y.
Tasaka
,
T.
Kimura
, and
Y.
Murai
, “
Estimating the effective viscosity of bubble suspensions in oscillatory shear flows by means of ultrasonic spinning rheometry
,”
Exp. Fluids
56
,
1867
(
2015
).
20.
T.
Yoshida
,
Y.
Tasaka
, and
Y.
Murai
, “
Rheological evaluation of complex fluids using ultrasonic spinning rheometry in an open container
,”
J. Rheol.
61
,
537
549
(
2017
).
21.
Y.
Tasaka
,
T.
Yoshida
,
R.
Rapberger
, and
Y.
Murai
, “
Linear viscoelastic analysis using frequency-domain algorithm on oscillating circular shear flows for bubble suspensions
,”
Rheol. Acta
57
,
229
240
(
2018
).
22.
T.
Yoshida
,
Y.
Tasaka
,
S.
Tanaka
,
H. J.
Park
, and
Y.
Murai
, “
Rheological properties of montmorillonite dispersions in dilute NaCl concentration investigated by ultrasonic spinning rheometry
,”
Appl. Clay Sci.
161
,
513
523
(
2018
).
23.
T.
Yoshida
,
Y.
Tasaka
, and
Y.
Murai
, “
Efficacy assessments in ultrasonic spinning rheometry: Linear viscoelastic analysis on non-Newtonian fluids
,”
J. Rheol.
63
,
503
517
(
2019
).
24.
T.
Yoshida
,
Y.
Tasaka
,
H. J.
Park
,
Y.
Murai
,
H.
Teramura
, and
S.
Koseki
, “
Inner structure visualization of fresh fruits utilizing ultrasonic velocity profiler
,”
J. Visualization
21
,
253
265
(
2018
).
25.
J. T.
Fu
and
M. A.
Rao
, “
Rheology and structure development during gelation of low-methoxyl pectin gels: The effect of sucrose
,”
Food Hydrocolloid
15
,
93
100
(
2001
).
26.
M. A. V.
Axelos
and
J. F.
Thibault
, “
The chemistry of low-methoxyl pectin gelation
,”
Chem. Technol. Pectin
6
,
109
118
(
1991
).
27.
A. J.
Giacomin
and
J. M.
Dealy
, “
Large-amplitude oscillatory shear
,” in
Techniques in Rheological Measurement
(
Springer
,
Dordrecht
,
1993
), pp.
99
121
.
28.
C.
Perge
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
29.
B.
Derakhshandeh
,
S. G.
Hatzikiriakos
, and
C. P.
Bennington
, “
The apparent yield stress of pulp fiber suspensions
,”
J. Rheol.
54
,
1137
1154
(
2010
).
30.
H. A.
Barnes
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
You do not currently have access to this content.