Superhydrophobic surfaces patterned with macroscale (≈1 mm) structures have gained increasing interest in the past years because of their potential in reducing the contact time between impacting liquid drops and the solid surface. The reduced wettability of these surfaces is of interest in numerous technical applications, as, for example, in anti-icing on airplane wings. Several experimental studies have been carried out on this topic in the literature; on the other hand, only very limited numerical investigations are available in the literature. In this paper, we present a numerical study based on a volume of fluid code for direct numerical simulation of incompressible multiphase flows. A necessary condition for the realization of this study was the implementation of arbitrary-shaped boundaries using a Cartesian grid system. Our implementation of embedded boundaries is based on a volume fraction representation of the boundaries and on a piecewise linear approximation of their surface. The discretized boundaries are then cut off from the computational domain, leading to an altered formulation of the discretized governing equations. To validate the method, we show simulation results for different impact velocities for the case of a droplet impacting on a wire, which has been investigated experimentally in the literature. The simulations show good agreement in terms of contact time and impact morphology, thus, showing the validity of the implementation. Moreover, an extensive analysis of the velocity field for this setup is presented, helping us to better understand the underlying physical phenomena.

1.
J. C.
Bird
,
R.
Dhiman
,
H.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
388
(
2013
).
2.
P.
Chantelot
,
A. M.
Moqaddam
,
A.
Gauthier
,
S. S.
Chikatamaria
,
C.
Clanet
,
I. V.
Karlin
, and
D.
Quéré
, “
Water ring-bouncing on repellent singularities
,”
Soft Matter
14
,
2227
2233
(
2018
).
3.
X.
Chen
and
V.
Yang
, “
Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions
,”
J. Comput. Phys.
269
,
22
39
(
2014
).
4.
K.
Eisenschmidt
,
M.
Ertl
,
H.
Gomaa
,
C.
Kieffer-Roth
,
C.
Meister
,
P.
Rauschenberger
,
M.
Reitzle
,
K.
Schlottke
, and
B.
Weigand
, “
Direct numerical simulations for multiphase flows: An overview of the multiphase code FS3D
,”
Appl. Math. Comput.
272
,
508
517
(
2016
).
5.
A.
Gauthier
,
S.
Symon
,
C.
Clanet
, and
D.
Quéré
, “
Water impacting on superhydrophobic macrotextures
,”
Nat. Commun.
6
,
8001
(
2015
).
6.
C.
Guo
,
J.
Sun
,
Y.
Sun
,
M.
Wang
, and
D.
Zhao
, “
Droplet impact on cross-scale cylindrical superhydrophobic surfaces
,”
Appl. Phys. Lett.
112
,
263702
(
2018
).
7.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
2189
(
1965
).
8.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
9.
H.
Johansen
and
P.
Colella
, “
A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains
,”
J. Comput. Phys.
147
,
60
85
(
1998
).
10.
D.
Khojasteh
,
A.
Bordbar
,
R.
Kamali
, and
M.
Marengo
, “
Curvature effect on droplet impacting onto hydrophobic and superhydrophobic spheres
,”
Int. J. Comput. Fluid Dyn.
31
,
310
323
(
2017
).
11.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with surfer
,”
J. Comput. Phys.
113
,
134
147
(
1994
).
12.
X.
Liu
,
Y.
Zhao
,
S.
Chen
,
S.
Shen
, and
X.
Zhao
, “
Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube
.”
Phys. Fluids
29
,
062105
(
2017
).
13.
Y.
Liu
,
M.
Andrew
,
J.
Li
,
J. M.
Yeomans
, and
Z.
Wang
, “
Symmetry breaking in drop bouncing on curved surfaces
,”
Nat. Commun.
6
,
10034
(
2015
).
14.
Y.
Liu
,
L.
Moevius
,
X.
Xu
,
T.
Qian
,
J. M.
Yeomans
, and
Z.
Wang
, “
Pancake bouncing on superhydrophobic surfaces
,”
Nat. Phys.
10
,
515
519
(
2014
).
15.
H. V.
Patel
,
S.
Das
,
J. A. M.
Kuipers
,
J. T.
Padding
, and
E. A. J. F.
Peters
, “
A coupled volume of fluid and immersed boundary method for simulating 3D multiphase flows with contact line dynamics in complex geometries
,”
Chem. Eng. Sci.
166
,
28
41
(
2017
).
16.
A.
Pathak
and
M.
Raessi
, “
A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method
,”
J. Comput. Phys.
311
,
87
113
(
2016
).
17.
A.
Pathak
and
M.
Raessi
, “
A three-dimensional volume-of-fluid method for reconstructing and advecting three-material interfaces forming contact lines
,”
J. Comput. Phys.
307
,
550
573
(
2016
).
18.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
,
572
600
(
2003
).
19.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
20.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Morphology of drop impact on a superhydrophobic surface with macro-structures
,”
Phys. Fluids
29
,
082104
(
2017
).
21.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Droplet ski-jumping on an inclined macro-textured superhydrophobic surface
,”
Appl. Phys. Lett.
113
,
103702
(
2018
).
22.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Triggering of flow asymmetry by anisotropic deflection of lamella during the impact of a drop onto superhydrophobic surfaces
,”
Phys. Fluids
30
,
072105
(
2018
).
23.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Contact time of a bouncing drop
,”
Nature
417
,
811
812
(
2002
).
24.
W. J.
Rider
and
D. B.
Kothe
, “
Reconstructing volume tracking
,”
J. Comput. Phys.
141
,
112
152
(
1998
).
25.
M.
Rieber
, “
Numerische modellierung der dynamik freier grenzflächen in zweiphasenströmungen
,” Ph.D. Thesis (
University of Stuttgart
,
2004
).
26.
A.
Rohatgi
, Webplotdigitizer 4.2,
2019
, https://automeris.io/WebPlotDigitizer.
27.
Y.
Shen
,
S.
Liu
,
C.
Zhu
,
J.
Tao
,
Z.
Chen
,
H.
Tao
,
L.
Pan
,
G.
Wang
, and
T.
Wang
, “
Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces
,”
Appl. Phys. Lett.
110
,
221601
(
2017
).
28.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
,
506
517
(
1968
).
29.
H.
Tan
, “
Three-dimensional simulation of micrometer-sized droplet impact and penetration into the powder bed
,”
Chem. Eng. Sci.
153
,
93
107
(
2016
).
30.
H.
Tan
, “
Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces
,”
Comput. Fluids
154
,
142
166
(
2017
).
31.
S.
Yun
, “
Bouncing of an ellipsoidal drop on a superhydrophobic surface
,”
Sci. Rep.
7
,
17699
(
2017
).
32.
H.
Zhang
,
X.
Yi
,
Y.
Du
,
R.
Zhang
,
X.
Zhang
,
F.
He
,
F.
Niu
, and
P.
Hao
, “
Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces
,”
Phys. Fluids
31
,
032104
(
2019
).
You do not currently have access to this content.