Evaporation-driven internal flows within a sessile droplet can transport microorganisms close to the leaf surface and facilitate their infiltration into the available openings, such as stomata. Here, using microfabricated surfaces out of polydimethylsiloxane, the sole effects of evaporation of sessile droplets in contamination of plant leaves was studied. These surfaces were patterned with stomata, trichomes, and grooves that are common surface microstructures on plant leaves. Evaporation of sessile droplets, containing bacterial suspensions, on real leaves and fabricated surfaces was studied using confocal microscopy. To provide insight about the effects of leaf hydrophobicity and surface roughness on the bacterial retention and infiltration, variations of contact angle of sessile droplets at these surfaces were measured during evaporation. The results showed that evaporation-driven flow transported bacteria close to the surface of spinach leaves and fabricated surfaces, leading to distinct infiltration into the stomata. Larger size and wider spacing of the micropores, and a more hydrophilic surface, led bacteria to spread more at the droplet base area and infiltrate into more stomata. Evaporation-driven movement of contact line, which can sweep bacteria over the leaf surface, was shown to lead to bacterial infiltration into the stomatal pores. Findings should help improve microbial safety of leafy greens.

1.
N. T.
Chamakos
,
M. E.
Kavousanakis
,
A. G.
Boudouvis
, and
A. G.
Papathanasiou
, “
Droplet spreading on rough surfaces: Tackling the contact line boundary condition
,”
Phys. Fluids
28
,
022105
(
2016
).
2.
X.
Chen
,
R.
Ma
,
J.
Li
,
C.
Hao
,
W.
Guo
,
B. L.
Luk
,
S. C.
Li
,
S.
Yao
, and
Z.
Wang
, “
Evaporation of droplets on superhydrophobic surfaces: Surface roughness and small droplet size effects
,”
Phys. Rev. Lett.
109
,
116101
(
2012
).
3.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
829
(
1997
).
4.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Contact line deposits in an evaporating drop
,”
Phys. Rev. E
62
(
1
),
756
765
(
2000
).
5.
I. S.
Fayzrakhmanova
and
A. V.
Straube
, “
Stick-slip dynamics of an oscillated sessile drop
,”
Phys. Fluids
21
,
072104
(
2009
).
6.
M.
He
,
D.
Liao
, and
H.
Qiu
, “
Multicomponent droplet evaporation on chemical micropatterned surfaces
,”
Sci. Rep.
7
,
41897
(
2017
).
7.
O.
Hegde
,
S.
Chakraborty
,
P.
Kabi
, and
S.
Basu
, “
Vapor mediated control of microscale flow in sessile droplets
,”
Phys. Fluids
30
,
122103
(
2018
).
8.
H.
Hu
and
R.
Larson
, “
Analysis of microfluid flow in an evaporating sessile droplet
,”
Langmuir
21
,
3963
3971
(
2005
).
9.
H.
Hu
and
R.
Larson
, “
Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet
,”
Langmuir
21
,
3972
3980
(
2005
).
10.
T. V.
Kasyap
,
D. L.
Koch
, and
M.
Wu
, “
Bacteria collective motion near contact line of an evaporating sessile drop
,”
Phys. Fluids
26
,
111703
(
2014
).
11.
T. V.
Kasyap
,
D. L.
Koch
, and
M.
Wu
, “
Hydrodynamic tracer diffusion in suspensions of swimming bacteria
,”
Phys. Fluids
26
,
081901
(
2014
).
12.
A. E.
Korenchenko
and
V. P.
Beskachko
, “
Oscillations of a sessile droplet in open air
,”
Phys. Fluids
25
,
112106
(
2013
).
13.
Y.
Kroupitski
,
D.
Golberg
,
E.
Belausov
,
R.
Pinto
,
D.
Swartzberg
,
D.
Granot
, and
S.
Sela
, “
Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata
,”
Appl. Environ. Microbiol.
75
,
6076
6086
(
2009
).
14.
V.
Lazouskaya
,
T.
Sun
,
L.
Liu
,
G.
Wang
, and
Y.
Jin
, “
Effect of surface properties on colloidal retention on natural and surrogate produce surfaces
,”
J. Food Sci.
81
(
12
),
E2956
E2965
(
2016
).
15.
V.
Panarese
,
E.
Herremans
,
D.
Cantre
,
E.
Demir
,
A.
Vicente
,
F. G.
Galindo
,
B.
Nicolai
, and
P.
Verboven
, “
X-ray microtomography provides new insights into vacuum impregnation of spinach leaves
,”
J. Food Eng.
188
,
50
57
(
2016
).
16.
B.
Sirinutsomboon
,
M. J.
Delwiche
, and
G. M.
Young
, “
Attachment of Escherichia coli on plant surface structures built by microfabrication
,”
Biosyst. Eng.
108
,
244
252
(
2011
).
17.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
18.
B.
Sobac
and
D.
Brutin
, “
Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate
,”
Phys. Fluids
24
,
032103
(
2012
).
19.
G.
Strotos
,
M.
Gavaises
,
A.
Theodorakakos
, and
G.
Bergeles
, “
Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers
,”
Int. J. Heat Mass Transfer
51
,
1516
1529
(
2008
).
20.
A. K.
Thokchom
,
R.
Swaminathan
, and
A.
Singh
, “
Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis
,”
Langmuir
30
,
12144
12153
(
2014
).
21.
F. C.
Yang
,
X. P.
Chen
, and
P.
Yue
, “
Surface roughness effects on contact line motion with small capillary number
,”
Phys. Fluids
30
,
012106
(
2018
).
22.
K. W.
Yong
,
P. B.
Ganesan
,
M. S.
Kazi
,
N. S.
Ramesh
,
I. A.
Badruddin
, and
N. M.
Mubarak
, “
Sliding behavior of droplet on a hydrophobic surface with hydrophilic cavities: A simulation study
,”
Phys. Fluids
30
,
122006
(
2018
).

Supplementary Material

You do not currently have access to this content.