Manipulation of aqueous droplets in microchannels has great significance in various emerging applications such as biological and chemical assays. Magnetic-field based droplet manipulation that offers unique advantages is consequently gaining attention. However, the physics of magnetic field-driven cross-stream migration and the coalescence of aqueous droplets with an aqueous stream are not well understood. Here, we unravel the mechanism of cross-stream migration and the coalescence of aqueous droplets flowing in an oil based ferrofluid with a coflowing aqueous stream in the presence of a magnetic field. Our study reveals that the migration phenomenon is governed by the advection (τa) and magnetophoretic (τm) time scales. Experimental data show that the dimensionless equilibrium cross-stream migration distance δ* and the length Lδ* required to attain equilibrium cross-stream migration depend on the Strouhal number, St = (τa/τm), as δ* = 1.1 St0.33 and Lδ*=5.3St0.50, respectively. We find that the droplet-stream coalescence phenomenon is underpinned by the ratio of the sum of magnetophoretic (τm) and film-drainage time scales (τfd) and the advection time scale (τa), expressed in terms of the Strouhal number (St) and the film-drainage Reynolds number (Refd) as ξ = (τm + τfd)/τa = (St−1 + Refd). Irrespective of the flow rates of the coflowing streams, droplet size, and magnetic field, our study shows that droplet-stream coalescence is achieved for ξ ≤ 50 and ferrofluid stream width ratio w* < 0.7. We utilize the phenomenon and demonstrated the extraction of microparticles and HeLa cells from aqueous droplets to an aqueous stream.

1.
L.
Wu
,
P.
Chen
,
Y.
Dong
,
X.
Feng
, and
B. F.
Liu
, “
Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting
,”
Biomed. Microdevices
15
,
553
(
2013
).
2.
H.
Song
,
D. L.
Chen
, and
R. F.
Ismagilov
, “
Reactions in droplets in microfluidic channels
,”
Angew. Chem., Int. Ed.
45
,
7336
(
2006
).
3.
S.
Dhiman
,
K. S.
Jayaprakash
,
R.
Iqbal
, and
A. K.
Sen
, “
Self-transport and manipulation of aqueous droplets on oil-submerged diverging groove
,”
Langmuir
34
,
12359
(
2018
).
4.
K. S.
Khalil
,
S. R.
Mahmoudi
,
N.
Abu-Dheir
, and
K. K.
Varanasi
, “
Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets
,”
Appl. Phys. Lett.
105
,
041604
(
2014
).
5.
D.
Jiang
and
S.-Y.
Park
, “
Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method
,”
Lab Chip
16
,
1831
(
2016
).
6.
C. G.
Yang
,
Z. R.
Xu
, and
J. H.
Wang
, “
Manipulation of droplets in microfluidic systems
,”
TrAC, Trends Anal. Chem.
29
,
141
(
2010
).
7.
K. S.
Jayaprakash
,
U.
Banerjee
, and
A. K.
Sen
, “
Dynamics of aqueous droplets at the interface of coflowing immiscible oils in a microchannel
,”
Langmuir
32
,
2136
(
2016
).
8.
X.
Chen
,
C.
Xue
,
L.
Zhang
,
G.
Hu
,
X.
Jiang
, and
J.
Sun
, “
Inertial migration of deformable droplets in a microchannel
,”
Phys. Fluids
26
,
112003
(
2014
).
9.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Continuous particle separation in spiral microchannels using dean flows and differential migration
,”
Lab Chip
8
,
1906
(
2008
).
10.
R.
Hajian
and
S.
Hardt
, “
Formation and lateral migration of nanodroplets via solvent shifting in a microfluidic device
,”
Microfluid. Nanofluid.
19
,
1281
(
2015
).
11.
A.
Karbalaei
,
R.
Kumar
, and
H. J.
Cho
, “
Thermocapillarity in microfluidics—A review
,”
Micromachines
7
,
13
(
2016
).
12.
S.-Y.
Park
,
S.
Kalim
,
C.
Callahan
,
M. A.
Teitell
, and
E. P. Y.
Chiou
, “
A light-induced dielectrophoretic droplet manipulation platform
,”
Lab Chip
9
,
3228
(
2009
).
13.
A.
Srivastava
,
S.
Karthick
,
K. S.
Jayaprakash
, and
A. K.
Sen
, “
Droplet demulsification using ultralow voltage-based electrocoalescence
,”
Langmuir
34
,
1520
(
2018
).
14.
M. R.
Hassan
,
J.
Zhang
, and
C.
Wang
, “
Deformation of a ferrofluid droplet in simple shear flows under uniform magnetic fields
,”
Phys. Fluids
30
,
092002
(
2018
).
15.
C.
Mandal
,
U.
Banerjee
, and
A. K.
Sen
, “
Transport of a sessile aqueous droplet over spikes of oil based ferrofluid in the presence of a magnetic field
,”
Langmuir
35
,
8238
(
2019
).
16.
N. T.
Nguyen
, “
Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale
,”
Microfluid. Nanofluid.
12
,
1
(
2012
).
17.
N.
Vats
,
C.
Wilhelm
,
P. E.
Rautou
,
M.
Poirier-Quinot
,
C.
Péchoux
,
C.
Devue
,
C. M.
Boulanger
, and
F.
Gazeau
, “
Magnetic tagging of cell-derived microparticles: New prospects for imaging and manipulation of these mediators of biological information
,”
Nanomedicine
5
,
727
(
2010
).
18.
N.
Pamme
and
A.
Manz
, “
On-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates
,”
Anal. Chem.
76
,
7250
(
2004
).
19.
Y.
Zhang
and
N.-T.
Nguyen
, “
Magnetic digital microfluidics – a review
,”
Lab Chip
17
,
994
(
2017
).
20.
L. H. P.
Cunha
,
I. R.
Siqueira
,
T. F.
Oliveira
, and
H. D.
Ceniceros
, “
Field-induced control of ferrofluid emulsion rheology and droplet break-up in shear flows
,”
Phys. Fluids
30
,
122110
(
2018
).
21.
S. A.
Peyman
,
E. Y.
Kwan
,
O.
Margarson
,
A.
Iles
, and
N.
Pamme
, “
Diamagnetic repulsion—A versatile tool for label-free particle handling in microfluidic devices
,”
J. Chromatogr. A
1216
,
9055
(
2009
).
22.
A.
Munaz
,
M. J. A.
Shiddiky
, and
N. T.
Nguyen
, “
Magnetophoretic separation of diamagnetic particles through parallel ferrofluid streams
,”
Sens. Actuators, B
275
,
459
(
2018
).
23.
K.
Zhang
,
Q.
Liang
,
S.
Ma
,
X.
Mu
,
P.
Hu
,
Y.
Wang
, and
G.
Luo
, “
On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force
,”
Lab Chip
9
,
2992
(
2009
).
24.
Y. J.
Sung
,
J. Y. H.
Kim
,
H.
Il Choi
,
H. S.
Kwak
, and
S. J.
Sim
, “
Magnetophoretic sorting of microdroplets with different microalgal cell densities for rapid isolation of fast growing strains
,”
Sci. Rep.
7
,
10390
(
2017
).
25.
R. E.
Rosensweig
, “
Magnetic fluids
,”
Annu. Rev. Fluid Mech.
19
,
437
(
1987
).
26.
U.
Banerjee
,
A.
Raj
, and
A. K.
Sen
, “
Dynamics of aqueous ferrofluid droplets at coflowing liquid-liquid interface under a non-uniform magnetic field
,”
Appl. Phys. Lett.
113
,
143702
(
2018
).
27.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
Q.
Zhao
,
S. H.
Tan
,
N. T.
Nguyen
, and
W.
Li
, “
A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles
,”
Lab Chip
16
,
3947
(
2016
).
28.
X.
Xuan
,
J.
Zhu
, and
C.
Church
, “
Particle focusing in microfluidic devices
,”
Microfluid. Nanofluid.
9
,
1
(
2010
).
29.
W.
Espulgar
,
Y.
Yamaguchi
,
W.
Aoki
,
D.
Mita
,
M.
Saito
,
J. K.
Lee
, and
E.
Tamiya
, “
Single cell trapping and cell-cell interaction monitoring of cardiomyocytes in a designed microfluidic chip
,”
Sens. Actuators, B
207
,
43
(
2015
).
30.
S.
Karthick
and
A. K.
Sen
, “
Role of shear induced diffusion in acoustophoretic focusing of dense suspensions
,”
Appl. Phys. Lett.
109
,
014101
(
2016
).
31.
D.
Matsunaga
,
F.
Meng
,
A.
Zöttl
,
R.
Golestanian
, and
J. M.
Yeomans
, “
Focusing and sorting of ellipsoidal magnetic particles in microchannels
,”
Phys. Rev. Lett.
119
,
198002
(
2017
).
32.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
18892
(
2007
).
33.
D.
Di Carlo
, “
Inertial microfluidics
,”
Lab Chip
9
,
3038
(
2009
).
34.
T.
Zhu
,
R.
Cheng
, and
L.
Mao
, “
Focusing microparticles in a microfluidic channel with ferrofluids
,”
Microfluid. Nanofluid.
11
,
695
(
2011
).
35.
K.
Zhang
,
Q.
Liang
,
X.
Ai
,
P.
Hu
,
Y.
Wang
, and
G.
Luo
, “
On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase
,”
Lab Chip
11
,
1271
(
2011
).
36.
R.
Zhou
and
C.
Wang
, “
Multiphase ferrofluid flows for micro-particle focusing and separation
,”
Biomicrofluidics
10
,
034101
(
2016
).
37.
L.
Mazutis
and
A. D.
Griffiths
, “
Selective droplet coalescence using microfluidic systems
,”
Lab Chip
12
,
1800
(
2012
).
38.
B.
Xu
,
N.-T.
Nguyen
, and
T. N.
Wong
, “
Droplet coalescence in microfluidic systems
,”
Micro Nanosyst.
3
,
131
(
2011
).
39.
T.
Ichikawa
, “
Electrical demulsification of oil-in-water emulsion
,”
Colloids Surf., A
302
,
581
(
2007
).
40.
V. B.
Varma
,
A.
Ray
,
Z. M.
Wang
,
Z. P.
Wang
, and
R. V.
Ramanujan
, “
Droplet merging on a lab-on-a-chip platform by uniform magnetic fields
,”
Sci. Rep.
6
,
37671
(
2016
).
41.
R. E.
Rosensweig
,
R.
Kaiser
, and
G.
Miskolczy
, “
Viscosity of magnetic fluid in a magnetic field
,”
J. Colloid Interface Sci.
29
,
680
(
1964
).
42.
D. Y. C.
Chan
,
E.
Klaseboer
, and
R.
Manica
, “
Film drainage and coalescence between deformable drops and bubbles
,”
Soft Matter
7
,
2235
(
2011
).
43.
V.
Bergeron
, “
Forces and structure in thin liquid soap films
,”
J. Phys.: Condens. Matter
11
,
R215
(
1999
).
44.
E.
Hemachandran
,
T.
Laurell
, and
A. K.
Sen
, “
Continuous droplet coalescence in a microchannel coflow using bulk acoustic waves
,”
Phys. Rev. Appl.
10
,
044008
(
2019
).
45.
S. A. K.
Jeelani
and
S.
Hartland
, “
Effect of interfacial mobility on thin film drainage
,”
J. Colloid Interface Sci.
164
,
296
(
1994
).
46.
C.
Scherer
and
A. M. F.
Neto
, “
Ferrofluids: Properties and applications
,”
Braz. J. Phys.
35
,
718
(
2005
).
47.
D.
Quéré
,
P.-G.
De Gennes
, and
F.
Brochard-Wyart
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer New York
,
New York, NY
,
2013
).
48.
P.
Sajeesh
,
M.
Doble
, and
A. K.
Sen
, “
Hydrodynamic resistance and mobility of deformable objects in microfluidic channels
,”
Biomicrofluidics
8
,
054112
(
2014
).
49.
K. S.
Jayaprakash
and
A. K.
Sen
, “
Droplet encapsulation of particles in different regimes and sorting of particle-encapsulating-droplets from empty droplets
,”
Biomicrofluidics
13
,
034108
(
2019
).
50.
M. W. H.
Ley
and
H.
Bruus
, “
Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions
,”
Lab Chip
16
,
1178
(
2016
).

Supplementary Material

You do not currently have access to this content.