The effects of flexibility on the wake structures of a foil under a heaving motion in a viscous uniform flow are numerically studied using an immersed boundary method. An inspection of the phase diagram of the wake structures in a map of the chord-length-based dimensionless heaving amplitude (AL) and Strouhal number (StL) shows that the wake transition boundaries of the rigid foil are well predicted by constant amplitude-based Strouhal number (StA) lines, similar to previous studies. However, the wake transition boundaries of the flexible foil are predictable by constant StA lines only for high StL cases. A large deformation angle of a flexible foil by the amplitude difference and phase difference between the leading and trailing edge cross-stream displacements reduces the effective leading edge velocity, with an accompanying decrease in the leading edge circulation. However, the trailing edge circulation for a flexible foil is increased due to increased trailing edge amplitude. The sum of the leading and trailing edge circulations plays an important role in determining the wake pattern behind a rigid and flexible foil, and wake transitions are observed beyond critical circulations. The decrease in the thrust coefficient for large values of StL and AL is closely associated with the generation of a complex wake pattern behind a foil, and the complex wake is a direct consequence of sufficiently large leading edge circulation. A critical effective phase velocity in a vortex dipole model is proposed to predict the maximum thrust coefficient without a complex wake pattern.

1.
Acrivos
,
A.
,
Leal
,
L. G.
,
Snowden
,
D. D.
, and
Pan
,
F.
, “
Further experiments on steady separated flows past bluff objects
,”
J. Fluid Mech.
34
,
25
48
(
1968
).
2.
Alben
,
S.
, “
Simulating the dynamics of flexible bodies and vortex sheets
,”
J. Comput. Phys.
228
,
2587
2603
(
2009
).
3.
Andersen
,
A.
,
Bohr
,
T.
,
Schnipper
,
T.
, and
Walther
,
J. H.
, “
Wake structure and thrust generation of a flapping foil in two-dimensional flow
,”
J. Fluid Mech.
812
,
R4
(
2017
).
4.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
72
(
1998
).
5.
Bishop
,
R. E. D.
and
Hassan
,
A. Y.
, “
The lift and drag forces on a circular cylinder oscillating in a flowing fluid
,”
Proc. R. Soc. London, Ser. A
277
,
51
75
(
1964
).
6.
Cleaver
,
D. J.
,
Wang
,
Z.
, and
Gursul
,
I.
, “
Bifurcating flows of plunging aerofoils at high Strouhal numbers
,”
J. Fluid Mech.
708
,
349
376
(
2012
).
7.
Combes
,
S. A.
and
Daniel
,
J.
, “
Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending
,”
J. Exp. Biol.
206
,
2989
2997
(
2003
).
8.
Das
,
A.
,
Shukla
,
R. K.
, and
Govardhan
,
R. N.
, “
Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil
,”
J. Fluid Mech.
800
,
307
326
(
2016
).
9.
Deng
,
J.
,
Sun
,
L.
,
Teng
,
L.
,
Pan
,
D.
, and
Shao
,
X.
, “
The correlation between wake transition and propulsive efficiency of a flapping foil: A numerical study
,”
Phys. Fluids
28
(
9
),
094101
(
2016
).
10.
Deng
,
J.
,
Teng
,
L.
,
Pan
,
D.
, and
Shao
,
X.
, “
Inertial effects of the semi-passive flapping foil on its energy extraction efficiency
,”
Phys. Fluids
27
(
5
),
053103
(
2015
).
11.
Dewey
,
P. A.
,
Boschitsch
,
B. M.
,
Moored
,
K. W.
,
Stone
,
H. A.
, and
Smits
,
A. J.
, “
Scaling laws for the thrust production of flexible pitching panels
,”
J. Fluid Mech.
732
,
29
46
(
2013
).
12.
Ellington
,
C. P.
, “
The aerodynamics of hovering insect flight. II. Morphological parameters
,”
Philos. Trans. R. Soc., B
305
,
17
(
1984
).
13.
Fernandez-Feria
,
R.
and
Alaminos-Quesada
,
J.
, “
Unsteady thrust, lift and moment of a two-dimensional flapping thin airfoil in the presence of leading-edge vortices: A first approximation from linear potential theory
,”
J. Fluid Mech.
851
,
344
373
(
2018
).
14.
Godoy-Diana
,
R.
,
Aider
,
J.-L.
, and
Wesfreid
,
J. E.
, “
Transitions in the wake of a flapping foil
,”
Phys. Rev. E
77
(
1
),
016308
(
2008
).
15.
Godoy-Diana
,
R.
,
Marais
,
C.
,
Aider
,
J. L.
, and
Wesfreid
,
J. E.
, “
A model for the symmetry breaking of the reverse Bénard–von Karman vortex street produced by a flapping foil
,”
J. Fluid Mech.
622
,
23
32
(
2009
).
16.
Gong
,
C.
,
Han
,
J.
,
Yuan
,
Z.
,
Fang
,
Z.
, and
Chen
,
G.
, “
Numerical investigation of the effects of different parameters on the thrust performance of three dimensional flapping wings
,”
Aerosp. Sci. Technol.
84
,
431
445
(
2019
).
17.
Han
,
J.
,
Zhang
,
Y.
, and
Chen
,
G.
, “
Effects of individual horizontal distance on the three-dimensional bionic flapping multi-wings in different schooling configurations
,”
Phys. Fluids
31
,
041903
(
2019
).
18.
Heathcote
,
S.
and
Gursul
,
I.
, “
Flexible flapping airfoil propulsion at low Reynolds numbers
,”
AIAA J.
45
,
1066
1079
(
2007
).
19.
Huang
,
W.-X.
,
Shin
,
S. J.
, and
Sung
,
H. J.
, “
Simulation of flexible filaments in a uniform flow by the immersed boundary method
,”
J. Comput. Phys.
226
,
2206
2228
(
2007
).
20.
Jeong
,
Y. D.
and
Lee
,
J. H.
, “
Passive control of a single flexible flag using two side-by-side flags
,”
Int. J. Heat Fluid Flow
65
,
90
104
(
2017
).
21.
Jongerius
,
S.
and
Lentink
,
D.
, “
Structural analysis of a dragonfly wing
,”
Exp. Mech.
50
,
1323
(
2010
).
22.
Kang
,
C.-K.
,
Aono
,
H.
,
Cesnik
,
C. E. S.
, and
Shyy
,
W.
, “
Effects of flexibility on the aerodynamic performance of flapping wings
,”
J. Fluid Mech.
689
,
32
74
(
2011
).
23.
Kats
,
J.
and
Weihs
,
D.
, “
Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility
,”
J. Fluid Mech.
88
(
03
),
485
497
(
1978
).
24.
Kim
,
B.
,
Park
,
S. G.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Self-propelled heaving and pitching flexible fin in a quiescent flow
,”
Int. J. Heat Fluid Flow
62
,
273
281
(
2016
).
25.
Kim
,
K.
,
Baek
,
S. J.
, and
Sung
,
H. J.
, “
An implicit decoupling procedure for the incompressible Navier-Stokes equations
,”
Int J. Numer. Methods Fluids
38
(
2
),
125
138
(
2002
).
26.
Kim
,
S.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Constructive and destructive interaction modes between two tandem flexible flags in viscous flow
,”
J. Fluid Mech.
661
,
511
521
(
2010
).
27.
Koochesfahani
,
M. M.
, “
Vortical patterns in the wake of an oscillating airfoil
,”
AIAA J.
27
,
1200
1205
(
1989
).
28.
Lagopoulos
,
N. S.
,
Weymouth
,
G. D.
, and
Ganapathisubramani
,
B.
, “
Universal scaling law for drag-to-thrust wake transition in flapping foils
,”
J. Fluid Mech.
872
,
R1
(
2019
).
29.
Lauder
,
G. V.
,
Madden
,
P. G. A.
,
Tangorra
,
J. L.
,
Anderson
,
E.
, and
Baker
,
T. V.
, “
Bioinspiration from fish for smart material design and function
,”
Smart Mater. Struct.
20
,
094014
(
2011
).
30.
Lighthill
,
M. J.
, “
Aquatic animal propulsion of high hydromechanical efficiency
,”
J. Fluid Mech.
44
(
02
),
265
301
(
1970
).
31.
Mackowski
,
A. W.
and
Williamson
,
C. H. K.
, “
Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching
,”
J. Fluid Mech.
765
,
524
543
(
2015
).
32.
Marais
,
C.
,
Thiria
,
B.
,
Wesfreid
,
J. E.
, and
Godoy-Diana
,
R.
, “
Stabilizing effect of flexibility in the wake of a flapping foil
,”
J. Fluid Mech.
710
,
659
669
(
2012
).
33.
Michelin
,
S.
and
Smith
,
S. G. L.
, “
Resonance and propulsion performance of a heaving flexible wing
,”
Phys. Fluids
21
,
071902
(
2009
).
34.
Park
,
S. G.
,
Kim
,
B.
, and
Sung
,
H. J.
, “
Hydrodynamics of a self-propelled flexible fin near the ground
,”
Phys. Fluids
29
,
051902
(
2017
).
35.
Park
,
S. G.
and
Sung
,
H. J.
, “
Hydrodynamics of flexible fins propelled in tandem, diagonal, triangular and diamond configurations
,”
J. Fluid Mech.
840
,
154
189
(
2018
).
36.
Prandtl
,
L.
and
Tietjens
,
O. G.
,
Fundamentals of Hydro- and Aeromechanics
(
Dover Scientific
,
1934
).
37.
Schnipper
,
T.
, “
Exotic wakes of flapping fins
,” Ph.D. thesis,
Technical University of Denmark
,
2010
.
38.
Schnipper
,
T.
,
Andersen
,
A.
, and
Bohr
,
T.
, “
Vortex wakes of a flapping foil
,”
J. Fluid Mech.
633
,
411
423
(
2009
).
39.
Shahzad
,
A.
,
Tian
,
F. B.
,
Young
,
J.
, and
Lai
,
J. C. S.
, “
Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios
,”
Phys. Fluids
30
,
091902
(
2018
).
40.
Shin
,
S. J.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method
,”
Int. J. Numer. Methods Fluids
58
,
263
286
(
2008
).
41.
Son
,
Y.
and
Lee
,
J. H.
, “
Flapping dynamics of coupled flexible flags in a uniform viscous flow
,”
J. Fluids Struct.
68
,
339
355
(
2017
).
42.
Taylor
,
G. K.
,
Nudds
,
R. L.
, and
Thomas
,
A. L. R.
, “
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency
,”
Nature
425
,
707
711
(
2003
).
43.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Grosenbaugh
,
M. A.
, “
Optimal thrust development in oscillating foils with application to fish propulsion
,”
J. Fluids Struct.
7
(
2
),
205
224
(
1993
).
44.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Yue
,
D. K. P.
, “
Hydrodynamics of fishlike swimming
,”
Annu. Rev. Fluid Mech.
32
(
1
),
33
53
(
2000
).
45.
Uddin
,
E.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Interaction modes of multiple flexible flags in a uniform flow
,”
J. Fluid Mech.
729
,
563
583
(
2013
).
46.
Uddin
,
E.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Actively flapping tandem flexible flags in a viscous flow
,”
J. Fluid Mech.
780
,
120
142
(
2015
).
47.
Weihs
,
D.
, “
Hydromechanics of fish schooling
,”
Nature
241
,
290
291
(
1973
).
48.
Williamson
,
C. H. K.
and
Roshko
,
A.
, “
Vortex formation in the wake of an oscillating cylinder
,”
J. Fluids Struct.
2
,
355
381
(
1988
).
49.
Wu
,
T.
, “
Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid
,”
J. Fluid Mech.
46
(
02
),
337
355
(
1971
).
50.
Zhang
,
J.
,
Childress
,
S.
,
Libchaber
,
A.
, and
Shelley
,
M.
, “
Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind
,”
Nature
408
,
835
839
(
2000
).
51.
Zhang
,
X.
,
Ni
,
S.
,
Wang
,
S.
, and
He
,
G.
, “
Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil
,”
Phys. Fluids
21
,
103302
(
2009
).
52.
Zheng
,
Z. C.
and
Wei
,
Z.
, “
Study of mechanisms and factors that influence the formation of vortical wake of a heaving airfoil
,”
Phys. Fluids
24
,
103601
(
2012
).
53.
Zhu
,
Q.
, “
Optimal frequency for flow energy harvesting of a flapping foil
,”
J. Fluid Mech.
675
,
495
628
(
2011
).
54.
Zhu
,
X.
,
He
,
G.
, and
Zhang
,
X.
, “
How flexibility affects the wake symmetry properties of a self-propelled plunging foil
,”
J. Fluid Mech.
751
,
164
183
(
2014a
).
55.
Zhu
,
X.
,
He
,
G.
, and
Zhang
,
X.
, “
Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil
,”
Comput. Fluids
97
,
1
20
(
2014b
).
You do not currently have access to this content.