The complex airflow in convection ovens directly influences the heat transferred to the product placed inside, thereby affecting product quality. Characterization of related airflow profiles can provide scientific understanding for improvement of oven designs as well as important parameters for simulation of involved thermal processes. In this study, the particle-imaging velocimetry (PIV) technique was applied to visualize airflow inside a household convection oven with samples placed at three different locations on a baking tray. The oven cavity was modified for optical access, and airflow was measured at room temperature. A 30 mW green laser was used for illuminating tracer particles in a laser sheet that were generated using incense sticks. The flow patterns were captured using a high-speed camera at 1000 fps. The vorticity and turbulent kinetic energy parameters derived from velocity fields reflected adequate mixing of air inside the cavity. The computed heat transfer coefficient distribution from the boundary layer flow fields to the sample surface ranged between 2.0 and 18.3 W m−2 K−1. The results showed separation of the laminar boundary layer from the object surface at angles of 85°–90°. The PIV-algorithms and boundary layer flow derived parameters developed in this study can be used for refined characterization of complex air or gas flows and related heat transfer characteristics in closed cavity convection ovens and the like arrangements.

1.
Baik
,
O. D.
,
Grabowski
,
S.
,
Trigui
,
M.
,
Marcotte
,
M.
, and
Castaigne
,
F.
, “
Heat transfer coefficients on cakes baked in a tunnel type industrial oven
,”
J. Food Sci.
64
(
4
),
688
694
(
1999
).
2.
Baik
,
O. D.
,
Marcotte
,
M.
, and
Castaigne
,
F.
, “
Cake baking in tunnel type multi-zone industrial ovens Part I. Characterization of baking conditions
,”
Food Res. Int.
33
,
587
598
(
2000
).
3.
Balagopal
,
S.
and
Go
,
D. B.
, “
Counter-flow ionic winds for localized hot spot cooling
,” in
Proceeding of ESA Annual Meeting on Electrostatics, 14–16 June 2011
(
Case Western Reserve University
,
Cleveland, OH
,
2011
).
4.
Brown
,
W. S.
,
Pitts
,
C. C.
, and
Leppert
,
G.
, “
Forced convection heat transfer from a uniformly heated sphere
,”
J. Heat Transfer
84
(
2
),
133
140
(
1962
).
5.
Care
,
I.
and
Arenas
,
M.
, “
On the impact of anemometer size on the velocity field in a closed wind tunnel
,”
Flow Meas. Instrum.
44
,
2
10
(
2015
).
6.
Carson
,
J. K.
,
Willix
,
J.
, and
North
,
M. F.
, “
Measurement of heat transfer coefficients within convection ovens
,”
J. Food Eng.
72
,
293
301
(
2006
).
7.
Cheng
,
W.
,
Murai
,
Y.
,
Sasaki
,
T.
, and
Yamamoto
,
F.
, “
Bubble velocity measurement with a recursive cross correlation PIV technique
,”
Flow Meas. Instrum.
16
,
35
46
(
2005
).
8.
Goranova
,
Z.
,
Baeva
,
M.
,
Stankov
,
S.
, and
Zsivanovits
,
G.
, “
Sensory characteristics and texture changes during storage of sponge cake with functional ingredients
,”
J. Food Phys.
28-29
,
70
79
(
2016
).
9.
Hart
,
D. P.
, “
Super-resolution PIV by recursive local-correlation
,”
J. Visualization
3
(
2
),
187
194
(
2000
).
10.
Ido
,
T.
,
Murai
,
Y.
, and
Yamamoto
,
F.
, “
Postprocessing algorithm for particle tracking velocimetry based on ellipsoidal equations
,”
Exp. Fluids
32
,
326
336
(
2002
).
11.
Khatir
,
Z.
,
Paton
,
J.
,
Thompson
,
H.
,
Kapur
,
N.
,
Toropov
,
V.
,
Lawes
,
M.
, and
Kirk
,
D.
, “
Computational fluid dynamics (CFD) investigation of air flow and temperature distribution in a small scale bread-baking oven
,”
Appl. Energy
89
,
89
96
(
2012
).
12.
Kondjoyan
,
A.
and
Daudin
,
J.
, “
Effects of free stream turbulence intensity on heat and mass transfers at the surface of a circular cylinder and an elliptical cylinder, axis ratio 4
,”
Intern. J. Heat Mass Transfer
38
(
10
),
1735
1749
(
1995
).
13.
Li
,
A.
and
Walker
,
C.
, “
Cake baking in conventional, impingement and hybrid ovens
,”
J. Food Sci.
61
(
1
),
188
191
(
1996
).
14.
Mirade
,
P. S.
,
Daudin
,
J. D.
,
Ducept
,
F.
,
Trystram
,
G.
, and
Clément
,
J.
, “
Characterization and CFD modelling of air temperature and velocity profiles in an industrial biscuit baking tunnel oven
,”
Food Res. Int.
37
,
1031
1039
(
2004
).
15.
Mistry
,
H.
,
Ganapathisubbu
,
S.
,
Dey
,
S.
,
Bishnoi
,
P.
, and
Castillo
,
J. L.
, “
A methodology to model flow-thermals inside a domestic gas oven
,”
Appl. Therm. Eng.
31
,
103
111
(
2011
).
16.
Murai
,
Y.
,
Nakada
,
T.
,
Suzuki
,
T.
, and
Yamamoto
,
F.
, “
Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine
,”
Meas. Sci. Technol.
18
,
2491
2503
(
2007
).
17.
Murai
,
Y.
,
Vlaskamp
,
J. H.
,
Nambu
,
Y.
,
Yoshimoto
,
T.
,
Brend
,
M. A.
,
Denissenko
,
P.
, and
Thomas
,
P. J.
, “
Off-axis PTV for 3-D visualization of rotating columnar flows
,”
Exp. Therm. Fluid Sci.
51
,
342
353
(
2013
).
18.
Purlis
,
E.
and
Salvadori
,
V. O.
, “
Modelling the browning of bread during baking
,”
Food Res. Int.
42
(
7
),
865
870
(
2009
).
19.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
Particle Image Velocimetry: A Practical Guide
, 2nd ed. (
Springer
,
2018
).
20.
Sakin
,
M.
,
Kaymak-Ertekin
,
F.
, and
Ilicali
,
C.
, “
Simultaneous heat and mass transfer simulation applied to convective oven cup cake baking
,”
J. Food Eng.
83
(
3
),
463
474
(
2007
).
21.
Sato
,
H.
,
Matsumura
,
T.
, and
Shibukawa
,
S.
, “
Apparent heat transfer in a forced convection oven and properties of baked food
,”
J. Food Sci.
52
(
1
),
185
188
(
1987
).
22.
Smolka
,
J.
, “
Genetic algorithm shape optimization of a natural air circulation heating oven based on an experimentally validated 3-D CFD model
,”
Int. J. Therm. Sci.
71
,
128
139
(
2013
).
23.
Smolka
,
J.
,
Bulinski
,
Z.
, and
Nowak
,
A. J.
, “
The experimental validation of a CFD model for a heating oven with natural air circulation
,”
Appl. Therm. Eng.
54
,
387
398
(
2013
).
24.
Son
,
S.
,
Kihm
,
K.
, and
Han
,
J. C.
, “
PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls
,”
Int. J. Heat Mass Transfer
45
(
24
),
4809
4822
(
2002
).
25.
Spence
,
C. J. T.
,
Buchmann
,
N. A.
, and
Jermy
,
M. C.
, “
Airflow in a domestic kitchen oven measured by particle imaging velocimetry
,” in
16th Australian Fluid Mechanics Conference Crown Plaza
(
Gold Coast, Australia
,
2007
), pp.
2
7
.
26.
Stamhuis
,
E. J.
, “
Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows
,”
Aquat. Ecol.
40
(
4
),
463
479
(
2006
).
27.
Therdthai
,
N.
,
Zhou
,
W.
, and
Adamczak
,
T.
, “
Optimization of the temperature profile in bread baking
,”
J. Food Eng.
55
(
1
),
41
48
(
2002
).
28.
Verboven
,
P.
,
Datta
,
A. K.
,
Anh
,
N. T.
,
Scheerlinck
,
N.
, and
Nicolai
,
B. M.
, “
Computation of airflow effects on heat and mass transfer in a microwave oven
,”
J. Food Eng.
59
,
181
190
(
2003
).
29.
Verboven
,
P.
,
Scheerlinck
,
N.
,
Baerdemaeker
,
J. D.
, and
Nicolaï
,
B. M.
, “
Computational fluid dynamics modelling and validation of the isothermal airflow in a forced convection oven
,”
J. Food Eng.
43
,
41
53
(
2000
).
30.
Westerweel
,
J.
and
Scarano
,
F.
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
,
1096
1100
(
2005
).
31.
Wood
,
J. N.
,
De Nayer
,
G.
,
Schmidt
,
S.
, and
Breuer
,
M.
, “
Experimental investigation and large-eddy simulation of the turbulent flow past a smooth and rigid hemisphere
,”
Flow, Turbul. Combust.
97
(
1
),
79
119
(
2016
).
32.
Zareifard
,
M. R.
,
Boissonneault
,
V.
, and
Marcotte
,
M.
, “
Bakery product characteristics as influenced by convection heat flux
,”
Food Res. Int.
42
,
856
864
(
2009
).
33.
Zukauskas
,
A.
,
Cylinders in Cross flow, High-Performance Single-Phase Heat Exchangers
(
Hemisphere Publishing Corporation
,
1989
), pp.
187
206
.
You do not currently have access to this content.