On December 7th, 1995, the Galileo descent probe entered Jupiter’s atmosphere at a relative velocity of 47.4 km s−1. Flight data revealed an unforeseen recession profile: while the stagnation region had been significantly oversized, the shoulder almost completely ablated. In an attempt to understand why numerical predictions diverge from the flight data, several sensitivity studies were performed at the 180 km altitude point. The inaccuracy of the Wilke/Blottner/Eucken model at temperatures above 5000 K was confirmed. When applied to Galileo’s entry, it predicts a narrower shock with higher peak temperatures compared to the Gupta/Yos model. The effects of He and H2 line-by-line radiation were studied. Inclusion of these systems increased radiative heating by 9% at the stagnation point, even when precursor heating is unaccounted for. Otherwise, the internal excitation of H2 due to absorption of radiation originating from the highly emitting shock layer promotes H2 emission before dissociation occurs at the shock, yielding 196% higher radiative heat fluxes. This emphasizes the importance of H2 radiation not only on the recession experienced by Galileo but also for future entries in gas giants. Accordingly, thermal nonequilibrium resulted in 25% lower radiative heating when compared to an equilibrium solution, contrary to previous investigations that neglected H2. Ablation products absorption was shown to counteract the increased emission due to precursor heating of H2. However, the ablation layer temperature must be accurately predicted using a material-response code coupled to the flowfield since radiative heating has been shown to significantly depend on this energy-exchange interaction. Finally, the tangent-slab and ray-tracing models agreed to within 12%.

1.
P.
Reynier
,
G.
D’Ammando
, and
D.
Bruno
, “
Modelling chemical kinetics and convective heating in giant planet entries
,”
Prog. Aerosp. Sci.
96
,
1
22
(
2018
).
2.
F. S.
Milos
,
Y.-K.
Chen
,
T.
Squire
, and
R.
Brewer
, “
Analysis of Galileo probe heatshield ablation and temperature data
,”
J. Spacecr. Rockets
36
,
298
306
(
1999
).
3.
J. O.
Arnold
, “
Planetary entry probes 1953–2036: A technologist’s perspective
,” in
10th International Planetary Probe Workshop
,
2013
.
4.
B.
Lopez
and
M.
Lino Da Silva
, “
SPARK: A software package for aerodynamics, radiation and kinetics
,” in
46th AIAA Thermophysics Conference
(
AIAA
,
2016
), p.
4025
.
5.
M.
Lino da Silva
,
B.
Lopez
, and
S.
Espinho
, SPARTAN 2.6 User’s Manual,
2016
.
6.
M.
Lino da Silva
, “
An adaptive line-by-line—Statistical model for fast and accurate spectral simulations in low-pressure plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
108
,
106
125
(
2007
).
7.
M.
Lino da Silva
, “
The line-by-line radiative code spartan
” (
2016
), http://esther.ist.utl.pt/spartan/; accessed 24 May 2019.
8.
M. E.
Tauber
and
R. M.
Wakefield
, “
Heating environment and protection during Jupiter entry
,”
J. Spacecr. Rockets
8
,
630
636
(
1971
).
9.
M.
Perrin
,
G.
Colonna
,
G.
D’Ammando
,
L.
Pietanza
,
P.
Riviere
,
A.
Soufani
, and
S.
Surzhikov
, “
Radiation models and radiation transfer in hypersonics
,”
Open Plasma Phys. J.
7
,
114
126
(
2014
).
10.
L. P.
Leibowitz
, “
Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture
,”
Phys. Fluids
16
,
59
68
(
1973
).
11.
F. R.
Livingston
and
P. Y.
Poon
, “
Relaxation distance and equilibrium electron density measurements in hydrogen-helium plasmas
,”
AIAA J.
14
,
1335
1337
(
1976
).
12.
L. P.
Leibowitz
and
T.-J.
Kuo
, “
Ionizational nonequilibrium heating during outer planetary entries
,”
AIAA J.
14
,
1324
1329
(
1976
).
13.
J. N.
Moss
, “
A study of the aerothermal entry environment for the Galileo probe
,” in
Entry Heating and Thermal Protection
(
AIAA
,
1980
), pp.
3
25
.
14.
J. N.
Moss
,
J. J.
Jones
, and
A. L.
Simmonds
, “
Radiative flux penetration through a blown shock layer for Jupiter entry conditions
,” in
Outer Planet Entry Heating and Thermal Protection
(
AIAA
,
1978
), pp.
22
41
.
15.
J. N.
Moss
,
A. L.
Simmonds
, and
E. C.
Anderson
, “
Turbulent radiating shock layers with coupled ablation injection
,”
J. Spacecr. Rockets
17
,
177
183
(
1980
).
16.
J.
Moss
and
A.
Simmonds
, “
Galileo probe forebody flowfield predictions during Jupiter entry
,” in
3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference
(
AIAA
,
1982
), p.
874
.
17.
S. N.
Tiwari
and
K. Y.
Szema
, “
Effects of precursor heating on chemical and radiative nonequilibrium viscous flow around a Jovian entry body
,” in
2nd Thermophysics and Heat Transfer Conference
(
AIAA
,
1978
), Vol. 64.
18.
S.
Matsuyama
,
N.
Ohnishi
,
A.
Sasoh
, and
K.
Sawada
, “
Numerical simulation of Galileo probe entry flowfield with radiation and ablation
,”
J. Thermophys. Heat Transfer
19
,
28
35
(
2005
).
19.
S.
Matsuyama
,
Y.
Shimogonya
,
N.
Ohnishi
,
K.
Sawada
, and
A.
Sasoh
, “
Numerical simulation of Galileo probe entry flowfield with radiation
,” in
8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
(
AIAA
,
2002
).
20.
C.
Park
, “
Injection-induced turbulence in stagnation-point boundary layers
,”
AIAA J.
22
,
219
225
(
1984
).
21.
M.
Furudate
,
I.-S.
Jeung
, and
S.
Matsuyama
, “
Nonequilibrium calculation of flowfield over Galileo probe
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2006
), Vol. 7.
22.
C.
Park
, “
Effect of Lymann radiation on nonequilibrium ionization of atomic hydrogen
,” in
37th AIAA Thermophysics Conference
(
AIAA
,
2004
), Chap. 2277.
23.
C.
Park
, “
Stagnation-region heating environment of the Galileo probe
,”
J. Thermophys. Heat Transfer
23
,
417
424
(
2009
).
24.
P.
Reynier
, “
Numerical reconstruction of Galileo entry
,” in
5th International Workshop on Radiation and High Temperature Gases in Atmospheric Entry
,
2012
.
25.
G.
D’Ammando
,
M.
Capitelli
,
F.
Esposito
,
A.
Laricchiuta
,
L. D.
Pietanza
, and
G.
Colonna
, “
The role of radiative reabsorption on the electron energy distribution functions in H2/He plasma expansion through a tapered nozzle
,”
Phys. Plasmas
21
,
093508
(
2014
).
26.
G.
Colonna
,
G.
D’Ammando
,
L.
Pietanza
, and
M.
Capitelli
, “
Excited-state kinetics and radiation transport in low-temperature plasmas
,”
Plasma Phys. Controlled Fusion
57
,
014009
(
2015
).
27.
H.
Yee
,
R.
Warming
, and
A.
Harten
, “
Implicit total variation diminishing (TVD) schemes for steady-state calculations
,”
J. Comput. Phys.
57
,
327
360
(
1985
).
28.
H.
Yee
, “
Upwind and symmetric shock-capturing schemes
,” Technical Report NASA-TM-89464,
NASA
,
1987
.
29.
M.
Furudate
, “
Nonequilibrium calculation of high-temperature radiating H2-He flowfield
,”
J. Thermophys. Heat Transfer
23
,
651
659
(
2009
).
30.
J. D.
Anderson
,
Hypersonic and High-Temperature Gas Dynamics
, 2nd ed. (
AIAA Education, AIAA
,
2006
).
31.
W. G.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
, 1st ed. (
John Wiley and Sons
,
1965
).
32.
U.
Fantz
and
D.
Wünderlich
, “
Franck–Condon factors, transition probabilities and radiative lifetimes for hydrogen molecules and their isotopomeres
,” Technical Report INDC(NDS)-457,
IAEA
,
2004
.
33.
K.-P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1979
).
34.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
N. A.
Team
, “
NIST atomic spectra database (version 5.5.6)
” (
2018
), https://physics.nist.gov/asd; accessed: 10 May 2018.
35.
G.
Palmer
,
D.
Prabhu
, and
B. A.
Cruden
, “
Aeroheating uncertainties in Uranus and Saturn entries by the Monte Carlo method
,”
J. Spacecr. Rockets
51
,
801
814
(
2014
).
36.
F.
Thivet
,
M.
Perrin
, and
S.
Candel
, “
A unified nonequilibrium model for hypersonic flows
,”
Phys. Fluids A
3
,
2799
2812
(
1991
).
37.
J. E.
Dove
and
H.
Teitelbaum
, “
The vibrational relaxation of H2. I. Experimental measurements of the rate of relaxation by H2, He, Ne, Ar, and Kr
,”
Chem. Phys.
6
,
431
444
(
1974
).
38.
J. G.
Kim
,
O. J.
Kwon
, and
C.
Park
, “
Master equation study and nonequilibrium chemical reactions for H + H2 and He + H2
,”
J. Thermophys. Heat Transfer
23
,
443
453
(
2009
).
39.
J.
Kim
,
O.
Kwon
, and
C.
Park
, “
State-to-state rate coefficients and master equation study for H2 + H2
,” in
47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition
(
AIAA
,
2009
), p.
1023
.
40.
D.
Bruno
,
C.
Catalfamo
,
M.
Capitelli
,
G.
Colonna
,
O.
De Pascale
,
P.
Diomede
,
C.
Gorse
,
A.
Laricchiuta
,
S.
Longo
,
D.
Giordano
 et al, “
Transport properties of high-temperature Jupiter atmosphere components
,”
Phys. Plasmas
17
,
112315
(
2010
).
41.
D.
Bruno
,
M.
Capitelli
,
C.
Catalfamo
,
R.
Celiberto
,
G.
Colonna
,
P.
Diomede
,
D.
Giordano
,
C.
Gorse
,
A.
Laricchiuta
,
S.
Longo
,
D.
Pagano
, and
F.
Pirani
, “
Transport properties of high-temperature Mars-atmosphere components
,” Technical Report STR-256,
European Space Agency
,
2008
.
42.
G. E.
Palmer
and
M. J.
Wright
, “
Comparison of methods to compute high-temperature gas viscosity
,”
J. Thermophys. Heat Transfer
17
,
232
239
(
2003
).
43.
G.
Palmer
and
M.
Wright
, “
A comparison of methods to compute high-temperature gas thermal conductivity
,” in
36th AIAA Thermophysics Conference
(
AIAA
,
2003
), p.
3913
.
44.
C.
Wilke
, “
A viscosity equation for gas mixtures
,”
J. Chem. Phys.
18
,
517
519
(
1950
).
45.
F. G.
Blottner
,
M.
Johnson
, and
M.
Ellis
, “
Chemically reacting viscous flow program for multi-component gas mixtures
,” Technical Report SC-RR-70-754,
Sandia Labs.
,
Albuquerque, New Mexico
,
1971
.
46.
R. N.
Gupta
,
J. M.
Yos
,
R. A.
Thompson
, and
K.-P.
Lee
, “
A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K
,” Technical Report NASA-RP-1232,
NASA
,
1990
.
47.
J. M.
Yos
, “
Approximate equations for the viscosity and translational thermal conductivity of gas mixtures
,” Technical Report AVSSD-0112-67-RM,
AVCO Corporation
,
Wilmington, Massachusetts
,
1967
.
48.
I. A.
Sokolova
, “
Collision integrals for components of high-temperature hydrogen-helium mixture
,”
Teplofiz. Vys. Temp.
15
,
734
743
(
1977
), original document in Russian.
49.
L.
Biolsi
, Jr.
, “
Transport properties in the atmosphere of Jupiter
,” Technical Report NASA-CR-158094,
NASA
,
1978
.
50.
D.
Bruno
,
C.
Catalfamo
,
M.
Capitelli
,
G.
Colonna
,
P.
Diomede
,
C.
Gorse
,
A.
Laricchiuta
,
S.
Longo
,
F.
Pirani
 et al, “
Transport properties of high-temperature Jupiter-atmosphere components
,” Technical Report STR-256,
European Space Agency
,
2008
.
51.
M.
Capitelli
,
D.
Cappelletti
,
G.
Colonna
,
C.
Gorse
,
A.
Laricchiuta
,
G.
Liuti
,
S.
Longo
, and
F.
Pirani
,
Chem. Phys.
338
(
1
),
62
68
(
2007
).
52.
M. J.
Wright
,
D.
Bose
,
G. E.
Palmer
, and
E.
Levin
, “
Recommended collision integrals for transport property computations. Part 1: Air species
,”
AIAA J.
43
,
2558
2564
(
2005
).
53.
L.
Biolsi
, “
Transport properties in the Jovian atmosphere
,”
J. Geophys. Res.: Space Phys.
83
,
1125
1131
, (
1978
).
54.
B.
McBride
and
S.
Gordon
, “
Computer program for calculation of complex chemical equilibrium compositions and applications II. Users manual and program description
,” Technical Report NASA-RP-1311,
NASA
,
1996
.
55.
C. O.
Johnston
, “
Nonequilibrium shock-layer radiative heating for Earth and Titan entry
,” Ph.D. thesis,
Virginia Tech
,
2006
.
56.
H.
Griem
,
Spectral Line Broadening by Plasmas
, 1st ed. (
Elsevier
,
2012
).
57.
A.
Döhrn
,
P.
Nowack
,
A.
Könies
,
S.
Günter
, and
V.
Helbig
, “
Stark broadening and shift of the first two Paschen lines of hydrogen
,”
Phys. Rev. E
53
,
6389
(
1996
).
58.
T.
Wujec
,
A.
Jazgara
,
J.
Halenka
, and
J.
Musielok
, “
Stark broadening of the hydrogen Paschen γ transition at electron densities of the order of cm
,”
Eur. Phys. J. D
23
,
405
408
(
2003
).
59.
C.
Stehlé
and
S.
Fouquet
, “
Hydrogen Stark broadened Brackett lines
,”
Int. J. Spectrosc.
2010
,
1
.
60.
K.
Pachucki
and
J.
Komasa
, “
Nonadiabatic corrections to rovibrational levels of H2
,”
J. Chem. Phys.
130
,
164113
(
2009
).
61.
H.
Abgrall
,
E.
Roueff
,
F.
Launay
,
J.-Y.
Roncin
, and
J.-L.
Subtil
, “
The Lyman and Werner band systems of molecular hydrogen
,”
J. Mol. Spectrosc.
157
,
512
523
(
1993
).
62.
H. M.
Crosswhite
,
The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke
(
Wiley-Interscience
,
1972
).
63.
D.
Bailly
,
E.
Salumbides
,
M.
Vervloet
, and
W.
Ubachs
, “
Accurate level energies in the EF1Σg+, GK1Σg+, H1Σg+, B1Σu+, C1Πu, B′  1Σu+, D1Πu, I1Πg, J1Δg states of H2
,”
Mol. Phys.
108
,
827
846
(
2010
).
64.
TOPBase: Online Atomic Database (
2019
) http://cdsweb.u-strasbg.fr/topbase/topbase.html; accessed 10 March 2019.
65.
T.
Ohmura
and
H.
Ohmura
, “
Electron-hydrogen scattering at low energies
,”
Phys. Rev.
118
,
154
157
(
1960
).
66.
A. M.
Frolov
, “
On the absorption of radiation by the negatively charged hydrogen ion. I. General theory and construction of the wave functions
,” preprint arXiv:1110.3432 (
2011
).
67.
C.
Ramsbottom
and
K.
Bell
, “
Photodetachment cross sections for the 1s2s2p metastable state of the negative helium ion
,”
J. Phys. B: At., Mol. Opt. Phys.
32
,
1315
1333
(
1999
).
68.
J. A. R.
Samson
and
G. N.
Haddad
, “
Total photoabsorption cross sections of H2 from 18 to 113 eV
,”
J. Opt. Soc. Am. B
11
,
277
279
(
1994
).
69.
M.
Yan
,
H.
Sadeghpour
, and
A.
Dalgarno
, “
Photoionization cross sections of He and H2
,”
Astrophys. J.
496
,
1044
1050
(
1998
).
70.
M.
Yan
,
H.
Sadeghpour
, and
A.
Dalgarno
, “
Erratum: Photoionization cross sections of He and H2
,”
Astrophys. J.
559
,
1194
(
2001
).
71.
W. F.
Huebner
and
W. D.
Barfield
,
Opacity, Astrophysics and Space Science Library
(
Springer
,
2014
).
72.
A.
Heays
,
A.
Bosman
, and
E.
van Dishoeck
, “
Photodissociation and photoionisation of atoms and molecules of astrophysical interest
,”
Astron. Astrophys.
602
,
A105
(
2017
).
73.
H.
Abgrall
,
E.
Roueff
, and
I.
Drira
, “
Total transition probability and spontaneous radiative dissociation of B, C, B′ and D states of molecular hydrogen
,”
Astron. Astrophys., Suppl. Ser.
141
,
297
300
(
2000
).
74.
S.
Geltman
, “
Free-free radiation in electron-neutral atom collisions
,”
J. Quant. Spectrosc. Radiat. Transfer
13
,
601
613
(
1973
).
75.
S.
Chauveau
, “
Constitution de bases de données spectroscopiques relatives à un plasma d’air: Application au calcul de transferts radiatifs
,” Ph.D. thesis,
Châtenay-Malabry
,
Ecole centrale de Paris
,
2001
.
76.
T.
John
, “
Neutral bremsstrahlung from molecular hydrogen and nitrogen
,”
Astron. Astrophys.
67
,
395
398
(
1978
).
77.
A. M.
Brandis
,
B. A.
Cruden
,
T. R.
White
,
D. A.
Saunders
, and
C. O.
Johnston
, “
Radiative heating on the after-body of Martian entry vehicles
,” in
45th AIAA Thermophysics Conference
(
AIAA
,
2015
), p.
3111
.
78.
C. O.
Johnston
and
A. M.
Brandis
, “
Features of afterbody radiative heating for Earth entry
,” in
11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
(
AIAA
,
2014
), p.
2675
.
79.
C. O.
Johnston
, “
Influence of radiative absorption on non-Boltzmann modeling for Mars entry
,”
J. Thermophys. Heat Transfer
28
,
795
799
(
2014
).
80.
C. O.
Johnston
and
A.
Mazaheri
, “
Impact of non-tangent-slab radiative transport on flowfield-radiation coupling
,”
J. Spacecr. Rockets
55
,
899
913
(
2018
).
81.
Á.
González
, “
Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices
,”
Math. Geosci.
42
,
49
(
2010
).
82.
G. J.
Elbert
and
P.
Cinnella
, “
Truly two-dimensional algorithms for radiative heat transfer calculations in reactive flows
,”
Comput. Fluids
24
,
523
552
(
1995
).
83.
M.
Lino Da Silva
and
J.
Beck
, “
Contribution of CO2 IR radiation to Martian entries radiative wall fluxes
,” in
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2011
), p.
135
.
84.
J.
Beck
,
P.
Omaly
,
M.
Lino da Silva
, and
S.
Surzhikov
, “
Radiative heating of the exomars entry demonstrator module
,” in
7th European Symposium on Aerothermodynamics
,
2011
.
85.
C. O.
Johnston
,
P. A.
Gnoffo
, and
A.
Mazaheri
, “
Influence of coupled radiation and ablation on the aerothermodynamic environment of planetary entry vehicles
,” in
Radiation and Gas-Surface Interaction Phenomena in High Speed Re-entry
(
2013
); available at https://www.vki.ac.be/index.php/component/jevents/eventdetail/312/-/sto-avt-218-radiation-and-gas-surface-interaction-phenomena-in-high-speed-re-entry?Itemid=816.
86.
M.
Lino da Silva
, “
Simulation des propriétés radiatives du plasma entourant un véhicule traversant une atmosphère planétaire à vitesse hypersonique—Application à la planète Mars
,” Ph.D. thesis,
Université d’Orléans
,
2004
.
87.
M.
Lino da Silva
, “
Arrays of radiative transition probabilities for CO2–N2 plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
102
,
348
386
(
2006
).
88.
T.
Furtenbacher
,
I.
Szabó
,
A. G.
Császár
,
P. F.
Bernath
,
S. N.
Yurchenko
, and
J.
Tennyson
, “
Experimental energy levels and partition function of the 12C2 molecule
,”
Astrophys. J., Suppl. Ser.
224
,
44
(
2016
).
89.
P. J.
Bruna
and
F.
Grein
, “
Spectroscopy of the C2 molecule: Valence and Rydberg states in the 7-10 eV region. An ab initio study
,”
Can. J. Phys.
79
,
653
671
(
2001
).
You do not currently have access to this content.