Phenomenological models, such as Park’s widely used two temperature model, overpredict the reaction rate coefficients at vibrationally cold conditions and underpredict it at vibrationally hot conditions. To this end, two new chemical reaction models, the nonequilibrium total temperature (NETT) and nonequilibrium piecewise interpolation models for the continuum framework are presented. The focus is on matching the reaction rate coefficients calculated using a quasiclassical trajectory based dissociation cross section database. The NETT model is an intuitive model based on physical understanding of the reaction at a molecular level. A new nonequilibrium parameter and the use of total temperature in the exponential term of the Arrhenius fit ensure the NETT model has a simple and straightforward implementation. The efficacy of the new model was investigated for several equilibrium and nonequilibrium conditions in the form of heat bath simulations. Additionally, two-dimensional hypersonic flows around a flat blunt-body were simulated by employing various chemical reaction models to validate the new models using experimental shock tube data. Park’s two temperature model predicted higher dissociation rates and a higher degree of dissociation leading to lower peak vibrational temperatures compared to those predicted by the new nonequilibrium models. Overall, the present work demonstrates that the new nonequilibrium models perform better than Park’s two temperature model, especially in simulations with a high degree of nonequilibrium, particularly as observed in re-entry flows.

1.
G. V.
Candler
and
I.
Nompelis
, “
Computational fluid dynamics for atmospheric entry
,” RTO-AVT/VKI Lecture Series: Non-Equilibrium Gas Dynamics from Physical Models to Hypersonic Flights,
2009
.
2.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
Wiley
,
New York
,
1990
).
3.
G. A.
Bird
, “
Direct simulation and the Boltzmann equation
,”
Phys. Fluids
13
,
2676
(
1970
).
4.
G. A.
Bird
,
M.
Gallis
,
J.
Torczynski
, and
D.
Rader
, “
Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating non-continuum gas flows
,”
Phys. Fluids
21
,
017103
(
2009
).
5.
S. K.
Stefanov
, “
On the basic concepts of the direct simulation Monte Carlo method
,”
Phys. Fluids
31
,
067104
(
2019
).
6.
R. S.
Myong
,
A.
Karchani
, and
O.
Ejtehadi
, “
A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification
,”
Phys. Fluids
31
,
066101
(
2019
).
7.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture
,”
J. Comput. Phys.
18
,
405
(
1975
).
8.
G. A.
Bird
, “
Simulation of multi-dimensional and chemically reacting flows (past space shuttle orbiter)
,” in
Proceedings of International Symposium on Rarefied Gas Dynamics
(
CEA
,
Paris
,
1979
), pp.
365
388
.
9.
G. A.
Bird
, “
The QK model for gas phase chemical reaction rates
,”
Phys. Fluids
23
,
106101
(
2011
).
10.
S. F.
Gimelshein
and
I. J.
Wysong
, “
Bird’s total collision energy model: 4 decades and going strong
,”
Phys. Fluids
31
,
076101
(
2019
).
11.
D. G.
Truhlar
and
J. T.
Muckerman
,
Reactive Scattering Cross Sections III: Quasiclassical and Semiclassical Methods
(
Springer US
,
1979
).
12.
C. E.
Treanor
and
P. V.
Marrone
, “
Effect of dissociation on the rate of vibrational relaxation
,”
Phys. Fluids
5
,
1022
(
1962
).
13.
S. O.
Macheret
and
J. W.
Rich
, “
Nonequilibrium dissociation rates behind strong shock waves: Classical model
,”
Chem. Phys.
174
,
25
(
1993
).
14.
M.
Panesi
,
R. L.
Jaffe
,
D. W.
Schwenke
, and
T. E.
Magin
, “
Rovibrational internal energy transfer and dissociation of N2(1σg+) − N(4Su) system in hypersonic flows
,”
J. Chem. Phys.
138
,
044312
(
2013
).
15.
J. D.
Bender
,
I.
Nompelis
,
P.
Valentini
,
S.
Doraiswamy
,
T. E.
Schwartzentruber
,
G. V.
Candler
,
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
, and
D. G.
Truhlar
, “
Quasiclassical trajectory analysis of the N2 + N2 reaction using a new ab initio potential energy surface
,” in
11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
(
AIAA
,
Atlanta, USA
,
2014
), p.
2964
.
16.
S.
Voelkel
,
P. L.
Varghese
, and
V.
Raman
, “
Multi-temperature dissociation rate of N2 + N2 → N2 + N + N calculated using selective sampling quasi-classical trajectory analysis
,”
J. Thermophys. Heat Transfer
31
,
965
(
2017
).
17.
I.
Borges Sebastião
,
M.
Kulakhmetov
, and
A.
Alexeenko
, “
DSMC study of oxygen shock waves based on high-fidelity vibrational relaxation and dissociation models
,”
Phys. Fluids
29
,
017102
(
2017
).
18.
R. S.
Chaudhry
,
M. S.
Grover
,
J. D.
Bender
,
T. E.
Schwartzentruber
, and
G. V.
Candler
, “
Quasiclassical trajectory analysis of oxygen dissociation via O2, O, and N2
,” in
AIAA Aerospace Sciences Meeting
(
AIAA
,
2018
), Paper 0237.
19.
N.
Singh
and
T.
Schwartzentruber
, “
Nonequilibrium internal energy distributions during dissociation
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
47
(
2018
).
20.
R. S.
Chaudhry
,
N.
Singh
,
M. S.
Grover
,
T. E.
Schwartzentruber
, and
G. V.
Candler
, “
Implementation of a nitrogen chemical kinetics model based on ab-initio data for hypersonic CFD
,” in
Joint Thermophysics and Heat Transfer Conference
(
AIAA
,
2018
), Paper 3439.
21.
T. E.
Magin
,
M.
Panesi
,
A.
Bourdon
,
R. L.
Jaffe
, and
D. W.
Schwenke
, “
Coarse-grain model for internal energy excitation and dissociation of molecular nitrogen
,”
Chem. Phys.
398
,
90
(
2012
).
22.
A.
Munafo
,
M.
Panesi
, and
T.
Magin
, “
Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows
,”
Phys. Rev. E
89
,
023001
(
2014
).
23.
A.
Munafo
,
Y.
Liu
, and
M.
Panesi
, “
Modeling of dissociation and energy transfer in shock heated nitrogen flows
,”
Phys. Fluids
27
,
127101
(
2015
).
24.
R.
Macdonald
,
R.
Jaffe
,
D.
Schwenke
, and
M.
Panesi
, “
Construction of a coarse-grain quasi classical trajectory method. I. Theory and application to N2–N2 system
,”
J. Chem. Phys.
148
,
054309
(
2018
).
25.
R.
Macdonald
,
M.
Grover
,
T. E.
Schwartzentruber
, and
M.
Panesi
, “
Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method
,”
J. Chem. Phys.
148
,
054310
(
2018
).
26.
H.
Luo
,
M.
Kulakhmetov
, and
A.
Alexeenko
, “
Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations
,”
J. Chem. Phys.
146
,
074303
(
2017
).
27.
H.
Luo
,
A. A.
Alexeenko
, and
S. O.
Macheret
, “
Development of an impulsive model of dissociation in direct simulation Monte Carlo
,”
Phys. Fluids
31
,
087105
(
2019
).
28.
D. A.
Andrienko
and
I. D.
Boyd
, “
State-specific dissociation in O2–O2 collisions by quasi-classical trajectory method
,”
Chem. Phys.
491
,
74
(
2017
).
29.
J.
Hao
and
C.
Wen
, “
Stabilization of a Mach 6 boundary layer using a two-dimensional cavity
,” in
AIAA Scitech Forum
(
AIAA
,
San Diego, USA
,
2019
), p.
1131
.
30.
T. K.
Mankodi
,
U. V.
Bhandarkar
, and
B. P.
Puranik
, “
Dissociation cross sections for N2 + N → 3N and O2 + O → 3O using the QCT method
,”
J. Chem. Phys.
146
,
204307
(
2017
).
31.
T. K.
Mankodi
,
U. V.
Bhandarkar
, and
B. P.
Puranik
, “
An ab initio chemical reaction model for the direct simulation Monte Carlo study of non-equilibrium nitrogen flows
,”
J. Chem. Phys.
147
,
084305
(
2017
).
32.
T. K.
Mankodi
,
U. V.
Bhandarkar
, and
B. P.
Puranik
, “
Dissociation cross-sections for high energy O2–O2 collisions
,”
J. Chem. Phys.
148
,
144305
(
2018
).
33.
R. S.
Myong
, “
Thermodynamically consistent hydrodynamic computational models for high Knudsen-number gas flows
,”
Phys. Fluids
11
,
2788
(
1999
).
34.
R. S.
Myong
, “
On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules
,”
Phys. Fluids
26
,
056102
(
2014
).
35.
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
, and
D. G.
Truhlar
, “
Global ab initio ground-state potential energy surface of N4
,”
J. Chem. Phys.
139
,
044309
(
2013
).
36.
Y.
Paukku
,
Z.
Varga
, and
D. G.
Truhlar
, “
Potential energy surface of triplet O4
,”
J. Chem. Phys.
148
,
124314
(
2018
).
37.
R. J.
Duchovic
,
Y. L.
Volobuev
,
G. C.
Lynch
,
D. G.
Truhlar
,
T. C.
Allison
,
A. F.
Wagner
,
B. C.
Garrett
, and
J. C.
Corchado
, “
POTLIB 2001: A potential energy surface library for chemical systems
,”
Comput. Phys. Commun.
144
,
169
(
2002
).
38.
S. R.
Byron
, “
Measurement of the rate of dissociation of oxygen
,”
J. Chem. Phys.
30
,
1380
(
1959
).
39.
B.
Cary
, “
Shock-tube study of the thermal dissociation of nitrogen
,”
Phys. Fluids
8
,
26
(
1965
).
40.
J. P.
Appleton
,
M.
Steinberg
, and
D.
Liquornik
, “
Shock-tube study of nitrogen dissociation using vacuum-ultraviolet light absorption
,”
J. Chem. Phys.
48
,
599
(
1968
).
41.
R. K.
Hanson
and
D.
Baganoff
, “
Shock-tube study of nitrogen dissociation rates using pressure measurements
,”
AIAA J.
10
,
211
(
1972
).
42.
O. P.
Shatalov
, “
Molecular dissociation of oxygen in the absence of vibrational equilibrium
,”
Combust., Explos. Shock Waves
9
,
610
(
1973
).
43.
D.
Baulch
,
Evaluated Kinetic Data for High Temperature Reactions: Homogeneous Gas Phase Reactions of the H2-N2-O2 System
(
Butterworths
,
1973
).
44.
T. J.
Scanlon
,
C.
White
,
M. K.
Borg
,
R. C.
Palharini
,
E.
Farbar
,
I. D.
Boyd
,
J. M.
Reese
, and
R. E.
Brown
, “
Open-source direct simulation Monte Carlo chemistry modeling for hypersonic flows
,”
AIAA J.
53
,
1670
(
2015
).
45.
M. A.
Gallis
,
R. B.
Bond
, and
J. R.
Torczynski
, “
A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows
,”
J. Chem. Phys.
131
,
124311
(
2009
).
46.
L.
Ibraguimova
,
A.
Sergievskaya
,
V. Y.
Levashov
,
O.
Shatalov
,
Y. V.
Tunik
, and
I.
Zabelinskii
, “
Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000–10 800 K
,”
J. Chem. Phys.
139
,
034317
(
2013
).
47.
K.
Neitzel
,
D.
Andrienko
, and
I. D.
Boyd
, “
Modeling fidelity for oxygen nonequilibrium thermochemistry in reflected shock tube flows
,” in
45th AIAA Thermophysics Conference
(
AIAA
,
Dallas, USA
,
2015
), p.
2509
.
48.
K.
Neitzel
,
D.
Andrienko
, and
I. D.
Boyd
, “
Thermochemical nonequilibrium modeling for hypersonic flows containing oxygen
,” in
46th AIAA Thermophysics Conference
(
AIAA
,
Washington, USA
,
2015
), p.
4023
.
49.
J. G.
Kim
and
G.
Park
, “
Thermochemical non-equilibrium parameter modification of oxygen for a two-temperature model
,”
Phys. Fluids
30
,
016101
(
2018
).
50.
I.
Wysong
,
S.
Gimelshein
,
Y.
Bondar
, and
M.
Ivanov
, “
Comparison of direct simulation Monte Carlo chemistry and vibrational models applied to oxygen shock measurements
,”
Phys. Fluids
26
,
043101
(
2014
).
51.
V.
Casseau
,
R.
Palharini
,
T.
Scanlon
, and
R.
Brown
, “
A two-temperature open-source CFD model for hypersonic reacting flows, part one: Zero-dimensional analysis
,”
Aerospace
3
,
34
(
2016
).

Supplementary Material

You do not currently have access to this content.