The computational economy of Reynolds-Averaged Navier-Stokes solvers encourages their widespread use in the optimization of aerospace designs. Unfortunately, the real-world performance of the resulting optimized designs may have shortcomings. A common contributor to this shortfall is a lack of adequately accounting for the uncertainty introduced by the structure of the turbulence model. We investigate whether including measures of turbulence-based uncertainty, as predicted by the eigenspace perturbation method, in an optimization under uncertainty framework can result in designs that are more robust with respect to turbulence model-form uncertainty. In an asymmetric diffuser design problem and a transonic airfoil design problem, our optimization formulation taking account of turbulence-based uncertainty obtained designs that were more robust to turbulence model uncertainty than optimal designs obtained via deterministic approaches.

1.
A.
Keane
,
Computational Approaches for Aerospace Design: The Pursuit of Excellence
(
Wiley
,
New York
,
2005
).
2.
M.
Kennedy
and
A.
O’Hagan
, “
Bayesian calibration of computer models
,”
J. R. Stat. Soc., Ser. B
63
,
425
(
2001
).
3.
H.
Beyer
and
B.
Sendhoff
, “
Robust optimization—A comprehensive survey
,”
Comput. Methods Appl. Mech. Eng.
196
,
3190
(
2007
).
4.
B.
Launder
,
D.
Tselepidakis
, and
B.
Younis
, “
A second-moment closure study of rotating channel flow
,”
J. Fluid Mech.
183
,
63
75
(
1987
).
5.
T.
Craft
,
B.
Launder
, and
K.
Suga
, “
Development and application of a cubic eddy-viscosity model of turbulence
,”
Int. J. Heat Fluid Flow
17
,
108
115
(
1996
).
6.
H.
Steiner
,
S.
Jakirlic
,
G.
Kadavelil
,
S.
Saric
,
R.
Manceau
, and
G.
Brenn
, in
Report on 13th ERCOFTAC Workshop on Refined Turbulence Modelling
(
ERCOFTAC
,
2009
), ERCOFTAC Bulletin, pp.
24
29
.
7.
S.
Jakirlic
,
G.
Kadavelil
,
E.
Sirbubalo
,
D.
von Terzi
,
M.
Breuer
, and
D.
Borello
, in
14th ERCOFTAC SIG15 Workshop on Turbulence Modelling: Turbulent Flow Separation in a 3-D Diffuser
(
ERCOFTAC
,
2010
), ERCOFTAC Bulletin, pp.
5
13
.
8.
G.
Mompean
,
S.
Gavrilakis
,
L.
Machiels
, and
M.
Deville
, “
On predicting the turbulence-induced secondary flows using nonlinear k-ε models
,”
Phys. Fluids
8
,
1856
1868
(
1996
).
9.
A.
Vuruskan
and
S.
Hosder
, “
Impact of turbulence models and shape parameterization on robust aerodynamic shape optimization
,”
J. Aircr.
56
,
1099
1115
(
2018
).
10.
T. D.
Ivanov
,
A. M.
Simonović
,
N.
Petrović
,
V. G.
Fotev
, and
I. A.
Kostić
, “
Influence of selected turbulence model on the optimization of a class-shape transformation parameterized airfoil
,”
Therm. Sci.
21
,
737
(
2017
).
11.
S.
Lim
and
H.
Choi
, “
Optimal shape design of a two-dimensional asymmetric diffuser in turbulent flow
,”
AIAA J.
42
,
1154
1169
(
2004
).
12.
A.
Vuruskan
and
S.
Hosder
, “
Investigation of the impact of turbulence models on robust aerodynamic shape optimization
,” in
2018 AIAA Aerospace Sciences Meeting
(
AIAA
,
2018
), p.
0553
.
13.
A. A.
Mishra
,
J.
Mukhopadhaya
,
G.
Iaccarino
, and
J.
Alonso
, “
Uncertainty estimation module for turbulence model predictions in SU2
,”
AIAA J.
57
,
1066
1077
(
2018
).
14.
G.
Iaccarino
,
A.
Mishra
, and
S.
Ghili
, “
Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
,”
Phys. Rev. Fluids
2
,
024605
(
2017
).
15.
S.
Banerjee
,
R.
Krahl
,
F.
Durst
, and
C.
Zenger
, “
Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
,”
J. Turbul.
8
,
N32
(
2007
).
16.
C.
Buice
and
J.
Eaton
, “
Experimental investigation of flow through an asymmetric plane diffuser
,” Report TSD-107,
Department of Mechanical Engineering
,
1997
.
17.
M. M.
Putko
,
A. C.
Taylor
,
P. A.
Newman
, and
L. L.
Green
, “
Approach for input uncertainty propagation and robust design in CFD using sensitivity derivatives
,”
J. Fluids Eng.
124
,
60
69
(
2002
).
18.
M. E.
Harr
,
Reliability Based Design
(
Dover
,
New York
,
1996
).
19.
L.
Cook
and
J.
Jarret
, “
Optimization using multiple dominance criteria for aerospace design under uncertainty
,”
AIAA J.
56
,
4965
(
2018
).
20.
D.
Bertsimas
and
M.
Sim
, “
The price of robustness
,”
Oper. Res.
52
,
35
53
(
2004
).
21.
A. H.
Shokouhi
,
A.
Hatami-Marbini
,
M.
Tavana
, and
S.
Saati
, “
A robust optimization approach for imprecise data envelopment analysis
,”
Comput. Ind. Eng.
59
,
387
397
(
2010
).
22.
A.
Ben-Tal
and
A.
Nemirovski
, “
Robust convex optimization
,”
Math. Oper. Res.
23
,
769
(
1998
).
23.
K. M.
Ryan
,
M. J.
Lewis
, and
K. H.
Yu
, “
Comparison of robust optimization methods applied to hypersonic vehicle design
,”
J. Aircr.
52
,
1510
(
2015
).
24.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
25.
P.
Spalart
and
S.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” in
30th Aerospace Sciences Meeting and Exhibit
(
AIAA
,
1992
), p.
439
.
26.
E. M.
Cherry
,
C. J.
Elkins
, and
J. K.
Eaton
, “
Geometric sensitivity of three-dimensional separated flows
,”
Int. J. Heat Fluid Flow
29
,
803
811
(
2008
).
27.
E.
Cherry
,
G.
Iaccarino
,
C.
Elkins
, and
J.
Eaton
, “
Separated flow in a three-dimensional diffuser: Preliminary validation
,”
Annu. Res. Briefs
2006
,
57
83
.
28.
D. G.
Wilson
and
T.
Korakianitis
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
(
MIT Press
,
2014
).
29.
T. W.
Sederberg
and
S. R.
Parry
, “
Free-form deformation of solid geometric models
,”
ACM SIGGRAPH Comput. Graphics
20
,
151
(
1986
).
30.
S.
Obi
,
K.
Aoki
, and
S.
Masuda
, “
Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser
,” in
Ninth Symposium on Turbulent Shear Flows
,
Hyoto, Japan
,
1993
.
31.
M. J.
Powell
, “
A direct search optimization method that models the objective and constraint functions by linear interpolation
,” in
Advances in Optimization and Numerical Analysis
(
Springer
,
1994
), pp.
51
67
.
32.
C.
Heschl
,
K.
Inthavong
,
W.
Sanz
, and
J.
Tu
, “
Evaluation and improvements of RANS turbulence models for linear diffuser flows
,”
Comput. Fluids
71
,
272
282
(
2013
).
33.
M.
Drela
, “
Pros and cons of airfoil optimization
,” in
Frontiers of Computational Fluid Dynamics
(
World Scientific Publishing Company, Singapore
,
1998
), Vol. 1998, pp.
363
381
.
34.
L.
Huyse
,
S. L.
Padula
,
R. M.
Lewis
, and
W.
Li
, “
Probabilistic approach to free-form airfoil shape optimization under uncertainty
,”
AIAA J.
40
,
1764
1772
(
2002
).
35.
C.
Ladson
, Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section NASA-TM-4074, (L-16472, NAS 1.15: 4074),
National Aeronautics and Space Administration, Langley Research Center
,
Hampton, VA
,
1988
.
36.
D.
Coles
and
A. J.
Wadcock
, “
Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift
,”
AIAA J.
17
,
321
329
(
1979
).
37.
F.
Palacios
,
T. D.
Economon
,
A. C.
Aranake
,
S. R.
Copeland
,
A. K.
Lonkar
,
T. W.
Lukaczyk
,
D. E.
Manosalvas
,
K. R.
Naik
,
A. S.
Padrón
,
B.
Tracey
 et al, “
Stanford university unstructured (SU2): Open-source analysis and design technology for turbulent flows
,” AIAA Paper 2014-0243,
2014
, pp.
13
17
.
38.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
,
357
372
(
1981
).
39.
V.
Venkatakrishnan
, “
Convergence to steady state solutions of the Euler equations on unstructured grids with limiters
,”
J. Comput. Phys.
118
,
120
130
(
1995
).
40.
Y.
Saad
and
M. H.
Schultz
, “
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
,”
SIAM J. Sci. Stat. Comput.
7
,
856
869
(
1986
).
41.
D. A.
Masters
,
N. J.
Taylor
,
T.
Rendall
,
C. B.
Allen
, and
D. J.
Poole
, “
Review of aerofoil parameterisation methods for aerodynamic shape optimisation
,” in
2015 AIAA Aerospace Sciences Meeting
(
AIAA
,
2015
).
42.
M.
Drela
, “
Low-Reynolds-number airfoil design for the M.I.T Daedalus prototype—A case study
,”
J. Aircr.
25
,
724
732
(
1988
).
43.
L.
Huyse
, “
Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies
,” Technical Report NASA/CR-2001-21102,
Hampton, Virginia
,
2001
.
You do not currently have access to this content.