A method is developed to solve biglobal stability functions in curvilinear systems which avoids reshaping of the airfoil or remapping the disturbance flow fields. As well, the biglobal stability functions for calculation in a curvilinear system are derived. The instability features of the flow over a NACA (National Advisory Committee for Aeronautics) 0025 airfoil at two different angles of attack, corresponding to a flow with a separation bubble and a fully separated flow, are investigated at a chord-based Reynolds number of 100 000. The most unstable mode was found to be related to the wake instability, with a dimensionless frequency close to one. For the flow with a separation bubble, there is an instability plateau in the dimensionless frequency ranging from 2 to 5.5. After the plateau and for an increasing dimensionless frequency, the growth rate of the most unstable mode decreases. For a fully separated flow, the plateau is narrower than that for the flow with a separation bubble. After the plateau, with an increased dimensionless frequency, the growth rate of the most unstable mode decreases and then increases once again. The growth rate of the upstream shear layer instability was found to be larger than that of the downstream shear layer instability.

1.
D.
Greenblatt
and
I. J.
Wygnanski
, “
The control of flow separation by periodic excitation
,”
Prog. Aerosp. Sci.
36
,
487
545
(
2000
).
2.
G.
Huang
,
W.
Lu
,
J.
Zhu
,
X.
Fu
, and
J.
Wang
, “
A nonlinear dynamic model for unsteady separated flow control and its mechanism analysis
,”
J. Fluid Mech.
826
,
942
974
(
2017
).
3.
H. L.
Reed
,
W. S.
Saric
, and
D.
Arnal
, “
Linear stability theory applied to boundary layers
,”
Annu. Rev. Fluid Mech.
28
,
389
428
(
1996
).
4.
S.
Yarusevych
,
P. E.
Sullivan
, and
J. G.
Kawall
, “
Coherent structures in an airfoil boundary layer and wake at low reynolds numbers
,”
Phys. Fluids
18
,
044101
(
2006
).
5.
J.-M.
Chomaz
, “
Global instabilities in spatially developing flows: Non-normality and nonlinearity
,”
Annu. Rev. Fluid Mech.
37
,
357
392
(
2005
).
6.
V.
Theofilis
, “
Global linear instability
,”
Annu. Rev. Fluid Mech.
43
,
319
(
2011
).
7.
V.
Theofilis
, “
Advances in global linear instability analysis of nonparallel and three-dimensional flows
,”
Prog. Aerosp. Sci.
39
,
249
315
(
2003
).
8.
P.
Paredes
,
M.
Hermanns
,
S.
Le Clainche
, and
V.
Theofilis
, “
Order 10000 speedup in global linear instability analysis using matrix formation
,”
Comput. Methods Appl. Mech. Eng.
253
,
287
304
(
2013
).
9.
J. M.
Floryan
and
M.
Asai
, “
On the transition between distributed and isolated surface roughness and its effect on the stability of channel flow
,”
Phys. Fluids
23
,
104101
(
2011
).
10.
E.
Merzari
,
S.
Wang
,
H.
Ninokata
, and
V.
Theofilis
, “
Biglobal linear stability analysis for the flow in eccentric annular channels and a related geometry
,”
Phys. Fluids
20
,
114104
(
2008
).
11.
S. V.
Malik
and
A. P.
Hooper
, “
Three-dimensional disturbances in channel flows
,”
Phys. Fluids
19
,
052102
(
2007
).
12.
F.
Alizard
and
J. C.
Robinet
, “
Modeling of optimal perturbations in flat plate boundary layer using global modes: Benefits and limits
,”
Theor. Comput. Fluid Dyn.
25
,
147
(
2011
).
13.
A.
Sevilla
and
C.
Martínez-Bazán
, “
Vortex shedding in high Reynolds number axisymmetric bluff-body wakes: Local linear instability and global bleed control
,”
Phys. Fluids
16
,
3460
(
2004
).
14.
E.
Sanmiguel-Rojas
,
A.
Sevilla
,
C.
Martínez-Bazán
, and
J.-M.
Chomaz
, “
Global mode analysis of axisymmetric bluff-body wakes: Stabilization by base bleed
,”
Phys. Fluids
21
,
114102
(
2009
).
15.
W.
Zhang
and
R.
Samtaney
, “
Biglobal linear stability analysis on low-Re flow past an airfoil at high angle of attack
,”
Phys. Fluids
28
,
044105
(
2016
).
16.
V.
Kitsios
,
D.
Rodríguez
,
V.
Theofilis
,
A.
Ooi
, and
J.
Soria
, “
Biglobal stability analysis in curvilinear coordinates of massively separated lifting bodies
,”
J. Comput. Phys.
228
,
7181
7196
(
2009
).
17.
W.
He
,
R. d. S.
Gioria
,
J. M.
Pérez
, and
V.
Theofilis
, “
Linear instability of low reynolds number massively separated flow around three NACA airfoils
,”
J. Fluid Mech.
811
,
701
741
(
2017
).
18.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
19.
E.
Åkervik
,
L.
Brandt
,
D. S.
Henningson
,
J.
Hœpffner
,
O.
Marxen
, and
P.
Schlatter
, “
Steady solutions of the Navier-Stokes equations by selective frequency damping
,”
Phys. Fluids
18
,
068102
(
2006
).
20.
P. M.
Munday
, “
Active flow control and global stability analysis of separated flow over a NACA 0012 airfoil
,” Ph.D. thesis,
The Florida State University
,
2017
.
21.
J. L.
Lumley
, “
The structure of inhomogeneous turbulence
,” in
Atmospheric Turbulence and Radio Wave Propagation
, edited by
A.
Yaglom
and
V.
Tatarski
(
Nauka
,
Moscow
,
1967
), pp.
166
178
.
22.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
23.
W.
Zhou
,
H.
Chen
,
Y.
Liu
,
X.
Wen
, and
D.
Peng
, “
Unsteady analysis of adiabatic film cooling effectiveness for discrete hole with oscillating mainstream flow
,”
Phys. Fluids
30
,
127103
(
2018
).
24.
J. H. M.
Ribeiro
and
W. R.
Wolf
, “
Identification of coherent structures in the flow past a NACA0012 airfoil via proper orthogonal decomposition
,”
Phys. Fluids
29
,
085104
(
2017
).
25.
D.
Lengani
,
D.
Simoni
,
M.
Ubaldi
, and
P.
Zunino
, “
POD analysis of the unsteady behavior of a laminar separation bubble
,”
Exp. Therm. Fluid Sci.
58
,
70
79
(
2014
).
26.
M.
Lang
,
U.
Rist
, and
S.
Wagner
, “
Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV
,”
Exp. Fluids
36
,
43
52
(
2004
).
27.
P.
Druault
,
J.
Delville
, and
J. P.
Bonnet
, “
Proper Orthogonal Decomposition of the mixing layer flow into coherent structures and turbulent Gaussian fluctuations
,”
C. R. Mec.
333
,
824
829
(
2005
).
28.
C.
Loken
,
D.
Gruner
,
L.
Groer
,
R.
Peltier
,
N.
Bunn
,
M.
Craig
,
T.
Henriques
,
J.
Dempsey
,
C.-H.
Yu
,
J.
Chen
 et al, “
Scinet: Lessons learned from building a power-efficient top-20 system and data centre
,”
J. Phys.: Conf. Ser.
256
,
012026
(
2010
).
29.
I.
Mary
and
P.
Sagaut
, “
Large eddy simulation of flow around an airfoil near stall
,”
AIAA J.
40
,
1139
1145
(
2002
).
30.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Science & Business Media
,
2006
).
31.
P.
Ziadé
and
P. E.
Sullivan
, “
Sensitivity of the Orr–Sommerfeld equation to base flow perturbations with application to airfoils
,”
Int. J. Heat Fluid Flow
67
,
122
130
(
2017
).
32.
V.
Theofilis
,
P.
Duck
, and
J.
Owen
, “
Viscous linear stability analysis of rectangular duct and cavity flows
,”
J. Fluid Mech.
505
,
249
286
(
2004
).
33.
K.
Groot
, “
Derivation of and simulations with biglobal stability equations
,” M.Sc. thesis,
TU Delft
,
The Netherlands
,
2013
.
34.
A.
Seifert
and
L. G.
Pack
, “
Oscillatory control of separation at high Reynolds numbers
,”
AIAA J.
37
,
1062
(
1999
).
35.
V.
Theofilis
,
S.
Hein
, and
U.
Dallmann
, “
On the origins of unsteadiness and three-dimensionality in a laminar separation bubble
,”
Philos. Trans. R. Soc., A
358
,
3229
(
2000
).
36.
D.
Rodríguez
,
E. M.
Gennaro
, and
M. P.
Juniper
, “
The two classes of primary modal instability in laminar separation bubbles
,”
J. Fluid Mech.
734
,
R4
(
2013
).
37.
M. A.
Regan
and
K.
Mahesh
, “
Global linear stability analysis of jets in cross-flow
,”
J. Fluid Mech.
828
,
812
836
(
2017
).
You do not currently have access to this content.