Particle-laden turbulent flow that separates due to a bump inside a channel is simulated to analyze the effects of the Stokes number and the lift force on the particle spatial distribution. The fluid friction Reynolds number is approximately 900 over the bump, the highest achieved for similar computational domains. The presence of the bump creates a complex background flow with a recirculating region and a strong shear layer. A range of particle Stokes numbers are considered, each simulated with and without the lift force in the particle dynamic equation. The effect of the lift force on the particle concentration is dominant in regions of high spanwise vorticity, particularly at the walls and in the shear layer. The concentration change is of the order of thousands when compared to cases where the lift force is omitted. At a low Stokes number, the particles segregate at both top and bottom walls and are present in the recirculating region. As the Stokes number increases, particles bypass the recirculating region and their redistribution is mostly affected by the strong shear layer. Particles segregate at the walls and particularly accumulate in secondary recirculating regions behind the bump. At higher Stokes numbers, the particles create reflection layers of high concentration due to their inertia as they are diverted by the bump. The fluid flow is less influential, and this enables the particles to enter the recirculating region by rebounding off walls and create a focused spot of high particle concentration.

1.
S.
Balachandar
and
J. K.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
133
(
2010
).
2.
S.
Elghobashi
, “
Direct numerical simulation of turbulent flows laden with droplets or bubbles
,”
Annu. Rev. Fluid Mech.
51
,
217
244
(
2019
).
3.
C.
Marchioli
, “
Large-eddy simulation of turbulent dispersed flows: A review of modelling approaches
,”
Acta Mech.
228
,
741
771
(
2017
).
4.
A.
Innocenti
,
C.
Marchioli
, and
S.
Chibbaro
, “
Lagrangian filtered density function for LES-based stochastic modelling of turbulent particle-laden flows
,”
Phys. Fluids
28
,
115106
(
2016
).
5.
G. I.
Park
,
M.
Bassenne
,
J.
Urzay
, and
P.
Moin
, “
A simple dynamic subgrid-scale model for LES of particle-laden turbulence
,”
Phys. Rev. Fluids
2
,
044301
(
2017
).
6.
J.-P.
Minier
,
S.
Chibbaro
, and
S. B.
Pope
, “
Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows
,”
Phys. Fluids
26
,
113303
(
2014
).
7.
H.
Sajjadi
,
M.
Salmanzadeh
,
G.
Ahmadi
, and
S.
Jafari
, “
Lattice Boltzmann method and RANS approach for simulation of turbulent flows and particle transport and deposition
,”
Particuology
30
,
62
72
(
2017
).
8.
S.
Vahidifar
,
M. R.
Saffarian
, and
E.
Hajidavalloo
, “
Introducing the theory of successful settling in order to evaluate and optimize the sedimentation tanks
,”
Meccanica
53
,
3477
(
2018
).
9.
S.
Elghobashi
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
329
(
1994
).
10.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
404
(
2009
).
11.
J. G. M.
Kuerten
, “
Point-particle DNS and LES of particle-laden turbulent flow-a state-of-the-art review
,”
Flow, Turbul. Combust.
97
,
689
713
(
2016
).
12.
K.
Gustavsson
,
J.
Jucha
,
A.
Naso
,
E.
Lévêque
,
A.
Pumir
, and
B.
Mehlig
, “
Statistical model for the orientation of nonspherical particles settling in turbulence
,”
Phys. Rev. Lett.
119
,
254501
(
2017
).
13.
G. A.
Voth
and
A.
Soldati
, “
Anisotropic particles in turbulence
,”
Annu. Rev. Fluid Mech.
49
,
249
276
(
2017
).
14.
K. D.
Squires
and
J. K.
Eaton
, “
Preferential concentration of particles by turbulence
,”
Phys. Fluids A
3
,
1169
1178
(
1991
).
15.
A. D.
Bragg
,
P. J.
Ireland
, and
L. R.
Collins
, “
Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence
,”
Phys. Rev. E
92
,
023029
(
2015
).
16.
P.
Weiss
,
D.
Oberle
,
D. W.
Meyer
, and
P.
Jenny
, “
Impact of turbulence forcing schemes on particle clustering
,”
Phys. Fluids
31
,
061703
(
2019
).
17.
C.
Nicolai
,
B.
Jacob
,
P.
Gualtieri
, and
R.
Piva
, “
Inertial particles in homogeneous shear turbulence: Experiments and direct numerical simulation
,”
Flow, Turbul. Combust.
92
,
65
82
(
2014
).
18.
F.
Battista
,
P.
Gualtieri
,
J.-P.
Mollicone
, and
C. M.
Casciola
, “
Application of the exact regularized point particle method (ERPP) to particle laden turbulent shear flows in the two-way coupling regime
,”
Int. J. Multiphase Flow
101
,
113
124
(
2018
).
19.
G.
Sardina
,
F.
Picano
,
P.
Schlatter
,
L.
Brandt
, and
C. M.
Casciola
, “
Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow
,”
Flow, Turbul. Combust.
86
,
519
532
(
2011
).
20.
G.
Sardina
,
P.
Schlatter
,
F.
Picano
,
C. M.
Casciola
,
L.
Brandt
, and
D. S.
Henningson
, “
Self-similar transport of inertial particles in a turbulent boundary layer
,”
J. Fluid Mech.
706
,
584
596
(
2012
).
21.
D.
Li
,
A.
Wei
,
K.
Luo
, and
J.
Fan
, “
Direct numerical simulation of a particle-laden flow in a flat plate boundary layer
,”
Int. J. Multiphase Flow
79
,
124
143
(
2016
).
22.
D.
Li
,
K.
Luo
,
Z.
Wang
,
W.
Xiao
, and
J.
Fan
, “
Drag enhancement and turbulence attenuation by small solid particles in an unstably stratified turbulent boundary layer
,”
Phys. Fluids
31
,
063303
(
2019
).
23.
M.
Bernardini
,
S.
Pirozzoli
, and
P.
Orlandi
, “
The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows
,”
Int. J. Multiphase Flow
51
,
55
64
(
2013
).
24.
C.
Marchioli
,
A.
Soldati
,
J. G. M.
Kuerten
,
B.
Arcen
,
A.
Taniere
,
G.
Goldensoph
,
K. D.
Squires
,
M. F.
Cargnelutti
, and
L. M.
Portela
, “
Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test
,”
Int. J. Multiphase Flow
34
,
879
893
(
2008
).
25.
C.
Marchioli
,
A.
Giusti
,
M. V.
Salvetti
, and
A.
Soldati
, “
Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow
,”
Int. J. Multiphase Flow
29
,
1017
1038
(
2003
).
26.
F.
Picano
,
G.
Sardina
, and
C. M.
Casciola
, “
Spatial development of particle-laden turbulent pipe flow
,”
Phys. Fluids
21
,
093305
(
2009
).
27.
F.
Battista
,
J.-P.
Mollicone
,
P.
Gualtieri
,
R.
Messina
, and
C. M.
Casciola
, “
Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime
,”
J. Fluid Mech.
878
,
420
444
(
2019
).
28.
G.
Sardina
,
P.
Schlatter
,
L.
Brandt
,
F.
Picano
, and
C. M.
Casciola
, “
Wall accumulation and spatial localization in particle-laden wall flows
,”
J. Fluid Mech.
699
,
50
78
(
2012
).
29.
J. D.
Kulick
,
J. R.
Fessler
, and
J. K.
Eaton
, “
Particle response and turbulence modification in fully developed channel flow
,”
J. Fluid Mech.
277
,
109
134
(
1994
).
30.
L.
Mortimer
,
D.
Njobuenwu
, and
M.
Fairweather
, “
Near-wall dynamics of inertial particles in dilute turbulent channel flows
,”
Phys. Fluids
31
,
063302
(
2019
).
31.
J.
Lee
and
C.
Lee
, “
Modification of particle-laden near-wall turbulence: Effect of Stokes number
,”
Phys. Fluids
27
,
023303
(
2015
).
32.
X.
Liu
,
K.
Luo
, and
J.
Fan
, “
Turbulence modulation in a particle-laden flow over a hemisphere-roughened wall
,”
Int. J. Multiphase Flow
87
,
250
262
(
2016
).
33.
M.
De Marchis
,
B.
Milici
,
G.
Sardina
, and
E.
Napoli
, “
Interaction between turbulent structures and particles in roughened channel
,”
Int. J. Multiphase Flow
78
,
117
131
(
2016
).
34.
A. W.
Vreman
, “
Turbulence attenuation in particle-laden flow in smooth and rough channels
,”
J. Fluid Mech.
773
,
103
(
2015
).
35.
B.
Milici
,
M.
De Marchis
,
G.
Sardina
, and
E.
Napoli
, “
Effects of roughness on particle dynamics in turbulent channel flows: A DNS analysis
,”
J. Fluid Mech.
739
,
465
478
(
2014
).
36.
F.
Picano
,
F.
Battista
,
G.
Troiani
, and
C. M.
Casciola
, “
Dynamics of PIV seeding particles in turbulent premixed flames
,”
Exp. Fluids
50
,
75
88
(
2011
).
37.
P.
Gualtieri
,
F.
Battista
, and
C.
Casciola
, “
Turbulence modulation in heavy-loaded suspensions of tiny particles
,”
Phys. Rev. Fluids
2
,
034304
(
2017
).
38.
F.
Battista
,
F.
Picano
,
G.
Troiani
, and
C. M.
Casciola
, “
Intermittent features of inertial particle distributions in turbulent premixed flames
,”
Phys. Fluids
23
,
123304
(
2011
).
39.
W.
Wu
,
G. G.
Soligo
,
C.
Marchioli
,
A.
Soldati
, and
U.
Piomelli
, “
Particle resuspension by a periodically forced impinging jet
,”
J. Fluid Mech.
820
,
284
311
(
2017
).
40.
T. C. W.
Lau
and
G. J.
Nathan
, “
Influence of Stokes number on the velocity and concentration distributions in particle-laden jets
,”
J. Fluid Mech.
757
,
432
457
(
2014
).
41.
T. C. W.
Lau
and
G. J.
Nathan
, “
The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet
,”
J. Fluid Mech.
809
,
72
110
(
2016
).
42.
X.
Wang
,
X.
Zheng
, and
P.
Wang
, “
Direct numerical simulation of particle-laden plane turbulent wall jet and the influence of Stokes number
,”
Int. J. Multiphase Flow
92
,
82
92
(
2017
).
43.
H. M.
Abdelaziz
,
M.
Gaber
,
M. M.
Abd-Elwakil
,
M. T.
Mabrouk
,
M. M.
Elgohary
,
N. M.
Kamel
,
D. M.
Kabary
,
M. S.
Freag
,
M. W.
Samaha
,
S. M.
Mortada
 et al., “
Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates
,”
J. Controlled Release
269
,
374
(
2017
).
44.
R.
Ni
,
J.
Zhao
,
Q.
Liu
,
Z.
Liang
,
U.
Muenster
, and
S.
Mao
, “
Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery
,”
Eur. J. Pharm. Sci.
99
,
137
146
(
2017
).
45.
E.
Ghahramani
,
O.
Abouali
,
H.
Emdad
, and
G.
Ahmadi
, “
Numerical investigation of turbulent airflow and microparticle deposition in a realistic model of human upper airway using LES
,”
Comput. Fluids
157
,
43
54
(
2017
).
46.
F. S.
Stylianou
,
J.
Sznitman
, and
S. C.
Kassinos
, “
Direct numerical simulation of particle laden flow in a human airway bifurcation model
,”
Int. J. Heat Fluid Flow
61
,
677
710
(
2016
).
47.
M.
Rahimi-Gorji
,
O.
Pourmehran
,
M.
Gorji-Bandpy
, and
T. B.
Gorji
, “
CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways
,”
J. Mol. Liq.
209
,
121
133
(
2015
).
48.
V.
Thondapu
,
C. V.
Bourantas
,
N.
Foin
,
I.-K.
Jang
,
P. W.
Serruys
, and
P.
Barlis
, “
Biomechanical stress in coronary atherosclerosis: Emerging insights from computational modelling
,”
Eur. Heart J.
38
,
81
92
(
2016
).
49.
W.
Choi
,
J. H.
Park
,
H.
Byeon
, and
S. J.
Lee
, “
Flow characteristics around a deformable stenosis under pulsatile flow condition
,”
Phys. Fluids
30
,
011902
(
2018
).
50.
X.
Huang
and
P.
Durbin
, “
Particulate dispersion in a turbulent serpentine channel
,”
Flow, Turbul. Combust.
85
,
333
344
(
2010
).
51.
X.
Huang
and
P. A.
Durbin
, “
Particulate mixing in a turbulent serpentine duct
,”
Phys. Fluids
24
,
013301
(
2012
).
52.
A.
Noorani
,
G.
Sardina
,
L.
Brandt
, and
P.
Schlatter
, “
Particle velocity and acceleration in turbulent bent pipe flows
,”
Flow, Turbul. Combust.
95
,
539
559
(
2015
).
53.
A.
Noorani
,
G.
Sardina
,
L.
Brandt
, and
P.
Schlatter
, “
Particle transport in turbulent curved pipe flow
,”
J. Fluid Mech.
793
,
248
279
(
2016
).
54.
J. T.
Ault
,
A.
Fani
,
K. K.
Chen
,
S.
Shin
,
F.
Gallaire
, and
H. A.
Stone
, “
Vortex-breakdown-induced particle capture in branching junctions
,”
Phys. Rev. Lett.
117
,
084501
(
2016
).
55.
F.
Stella
,
N.
Mazellier
, and
A.
Kourta
, “
Scaling of separated shear layers: An investigation of mass entrainment
,”
J. Fluid Mech.
826
,
851
887
(
2017
).
56.
B.
Krank
,
M.
Kronbichler
, and
W. A.
Wall
, “
Direct numerical simulation of flow over periodic hills up to ReH = 10595
,”
Flow, Turbul. Combust.
101
,
521
551
(
2017
).
57.
L. A. C. A.
Schiavo
,
W. R.
Wolf
, and
J. L. F.
Azevedo
, “
Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation
,”
Phys. Fluids
29
,
115108
(
2017
).
58.
M.
Marquillie
,
U.
Ehrenstein
, and
J.-P.
Laval
, “
Instability of streaks in wall turbulence with adverse pressure gradient
,”
J. Fluid Mech.
681
,
205
(
2011
).
59.
J.-P.
Laval
,
M.
Marquillie
, and
U.
Ehrenstein
, “
On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability
,”
J. Turbul.
13
,
N21
(
2012
).
60.
J.-P.
Mollicone
,
F.
Battista
,
P.
Gualtieri
, and
C. M.
Casciola
, “
Turbulence dynamics in separated flows: The generalised Kolmogorov equation for inhomogeneous anisotropic conditions
,”
J. Fluid Mech.
841
,
1012
1039
(
2018
).
61.
J.-P.
Mollicone
,
F.
Battista
,
P.
Gualtieri
, and
C. M.
Casciola
, “
Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel
,”
J. Fluid Mech.
823
,
100
133
(
2017
).
62.
P.-Y.
Passaggia
and
U.
Ehrenstein
, “
Optimal control of a separated boundary-layer flow over a bump
,”
J. Fluid Mech.
840
,
238
265
(
2018
).
63.
R.
Matai
and
P.
Durbin
, “
Large-eddy simulation of turbulent flow over a parametric set of bumps
,”
J. Fluid Mech.
866
,
503
525
(
2019
).
64.
F.
Fadla
,
F.
Alizard
,
L.
Keirsbulck
,
J.-C.
Robinet
,
J.-P.
Laval
,
J.-M.
Foucaut
,
C.
Chovet
, and
M.
Lippert
, “
Investigation of the dynamics in separated turbulent flow
,”
Eur. J. Mech.-B/Fluids
76
,
190
204
(
2019
).
65.
S. M.
Hosseini
,
R.
Vinuesa
,
P.
Schlatter
,
A.
Hanifi
, and
D. S.
Henningson
, “
Direct numerical simulation of the flow around a wing section at moderate Reynolds number
,”
Int. J. Heat Fluid Flow
61
,
117
128
(
2016
).
66.
C.
Kähler
,
S.
Scharnowski
, and
C.
Cierpka
, “
Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions
,”
J. Fluid Mech.
796
,
257
284
(
2016
).
67.
M.
Moroni
,
E.
Lupo
, and
F.
La Marca
, “
Hydraulic separation of plastic wastes: Analysis of liquid-solid interaction
,”
Waste Manage.
66
,
13
22
(
2017
).
68.
E.
Lupo
,
M.
Moroni
,
F.
La Marca
,
S.
Fulco
, and
V.
Pinzi
, “
Investigation on an innovative technology for wet separation of plastic wastes
,”
Waste Manage.
51
,
3
12
(
2016
).
69.
S.
Leonardi
and
I. P.
Castro
, “
Channel flow over large cube roughness: A direct numerical simulation study
,”
J. Fluid Mech.
651
,
519
539
(
2010
).
70.
S.
Leonardi
,
P.
Orlandi
, and
R. A.
Antonia
, “
Properties of d-and k-type roughness in a turbulent channel flow
,”
Phys. Fluids
19
,
125101
(
2007
).
71.
M.
De Marchis
,
B.
Milici
, and
E.
Napoli
, “
Solid sediment transport in turbulent channel flow over irregular rough boundaries
,”
Int. J. Heat Fluid Flow
65
,
114
126
(
2017
).
72.
K.
Luo
,
Q.
Dai
,
X.
Liu
, and
J.
Fan
, “
Effects of wall roughness on particle dynamics in a spatially developing turbulent boundary layer
,”
Int. J. Multiphase Flow
111
,
140
157
(
2019
).
73.
P.
Fischer
,
J. W.
Lottes
, and
S. G.
Kerkemeier
, “Nek5000 - Open Source Spectral Element CFD Solver, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, 2008, see http://nek5000.mcs.anl.gov.
74.
A. T.
Patera
, “
A spectral element method for fluid dynamics
,”
J. Comput. Phys.
54
,
468
488
(
1984
).
75.
M.
De Marchis
and
B.
Milici
, “
Turbulence modulation by micro-particles in smooth and rough channels
,”
Phys. Fluids
28
,
115101
(
2016
).
You do not currently have access to this content.