We use X-ray imaging to study viscous resuspension. In a Taylor-Couette geometry, we shear an initially settled layer of spherical glass particles immersed in a Newtonian fluid and measure the local volume fraction profiles. In this configuration, the steady-state profiles are simply related to the normal viscosity defined in the framework of the suspension balance model. These experiments allow us to examine this fundamental quantity over a wide range of volume fractions, in particular, in the semidilute regime where experimental data are sorely lacking. Our measurements strongly suggest that the particle stress is quadratic with respect to the volume fraction in the dilute limit. Strikingly, they also reveal a nonlinear dependence on the Shields number, in contrast with previous theoretical and experimental results. This likely points to shear-thinning particle stresses and to a non-Coulomb or velocity-weakening friction between the particles, as also evidenced from shear reversal experiments.

1.
G. G.
Stokes
,
On the Effect of the Internal Friction of Fluids on the Motion of Pendulums
(
Pitt Press
,
Cambridge
,
1851
), Vol. 9.
2.
A.
Einstein
, “
Eine neue bestimmung der moleküldimensionen
,”
Ann. Phys.
324
,
289
306
(
1906
).
3.
P. R.
Nott
and
J. F.
Brady
, “
Pressure-driven flow of suspensions: Simulation and theory
,”
J. Fluid Mech.
275
,
157
199
(
1994
).
4.
J. F.
Morris
and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: The role of normal stresses
,”
J. Rheol.
43
,
1213
1237
(
1999
).
5.
D.
Lhuillier
, “
Migration of rigid particles in non-Brownian viscous suspensions
,”
Phys. Fluids
21
,
023302
(
2009
).
6.
P. R.
Nott
,
É.
Guazzelli
, and
O.
Pouliquen
, “
The suspension balance model revisited
,”
Phys. Fluids
23
,
043304
(
2011
).
7.
F.
Boyer
,
É.
Guazzelli
, and
O.
Pouliquen
, “
Unifying suspension and granular rheology
,”
Phys. Rev. Lett.
107
,
188301
(
2011
).
8.
É.
Guazzelli
and
O.
Pouliquen
, “
Rheology of dense granular suspensions
,”
J. Fluid Mech.
852
,
P1
(
2018
).
9.
É.
Guazzelli
and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
2012
).
10.
I. E.
Zarraga
,
D. A.
Hill
, and
D. T.
Leighton
, Jr.
, “
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids
,”
J. Rheol.
44
,
185
220
(
2000
).
11.
T.
Dbouk
,
L.
Lobry
, and
E.
Lemaire
, “
Normal stresses in concentrated non-Brownian suspensions
,”
J. Fluid Mech.
715
,
239
272
(
2013
).
12.
G.
Chatté
,
J.
Comtet
,
A.
Niguès
,
L.
Bocquet
,
A.
Siria
,
G.
Ducouret
,
F.
Lequeux
,
N.
Lenoir
,
G.
Ovarlez
, and
A.
Colin
, “
Shear thinning in non-Brownian suspensions
,”
Soft Matter
14
,
879
893
(
2018
).
13.
R. I.
Tanner
,
C.
Ness
,
A.
Mahmud
,
S.
Dai
, and
J.
Moon
, “
A bootstrap mechanism for non-colloidal suspension viscosity
,”
Rheol. Acta
57
,
635
643
(
2018
).
14.
L.
Lobry
,
E.
Lemaire
,
F.
Blanc
,
S.
Gallier
, and
F.
Peters
, “
Shear thinning in non-Brownian suspensions explained by variable friction between particles
,”
J. Fluid Mech.
860
,
682
710
(
2019
).
15.
C.
Gamonpilas
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear and normal stress measurements in non-Brownian monodisperse and bidisperse suspensions
,”
J. Rheol.
60
,
289
296
(
2016
).
16.
É.
Couturier
,
F.
Boyer
,
O.
Pouliquen
, and
É.
Guazzelli
, “
Suspensions in a tilted trough: Second normal stress difference
,”
J. Fluid Mech.
686
,
26
39
(
2011
).
17.
D. T.
Leighton
, Jr.
and
A.
Acrivos
, “
Viscous resuspension
,”
Chem. Eng. Sci.
41
,
1377
1384
(
1986
).
18.
A.
Acrivos
,
R.
Mauri
, and
X.
Fan
, “
Shear-induced resuspension in a Couette device
,”
Int. J. Multiphase Flow
19
,
797
802
(
1993
).
19.
S.
Deboeuf
,
N.
Lenoir
,
D.
Hautemayou
,
M.
Bornert
,
F.
Blanc
, and
G.
Ovarlez
, “
Imaging non-Brownian particle suspensions with X-ray tomography: Application to the microstructure of Newtonian and viscoplastic suspensions
,”
J. Rheol.
62
,
643
663
(
2018
).
20.
M.
Gholami
,
A.
Rashedi
,
N.
Lenoir
,
D.
Hautemayou
,
G.
Ovarlez
, and
S.
Hormozi
, “
Time-resolved 2D concentration maps in flowing suspensions using X-ray
,”
J. Rheol.
62
,
955
974
(
2018
).
21.
M.
Baur
,
N.
Uhlmann
,
T.
Pöschel
, and
M.
Schröter
, “
Correction of beam hardening in X-ray radiograms
,”
Rev. Sci. Instrum.
90
,
025108
(
2019
).
22.
J.-C.
Bacri
,
C.
Frenois
,
M.
Hoyos
,
R.
Perzynski
,
N.
Rakotomalala
, and
D.
Salin
, “
Acoustic study of suspension sedimentation
,”
Europhys. Lett.
2
,
123
(
1986
).
23.
G. Y.
Onoda
and
E. G.
Liniger
, “
Random loose packings of uniform spheres and the dilatancy onset
,”
Phys. Rev. Lett.
64
,
2727
2730
(
1990
).
24.
K. J.
Dong
,
R. Y.
Yang
,
R. P.
Zou
, and
A. B.
Yu
, “
Role of interparticle forces in the formation of random loose packing
,”
Phys. Rev. Lett.
96
,
145505
(
2006
).
25.
M.
Jerkins
,
M.
Schröter
,
H. L.
Swinney
,
T. J.
Senden
,
M.
Saadatfar
, and
T.
Aste
, “
Onset of mechanical stability in random packings of frictional spheres
,”
Phys. Rev. Lett.
101
,
018301
(
2008
).
26.
G.
Ovarlez
,
F.
Bertrand
, and
S.
Rodts
, “
Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging
,”
J. Rheol.
50
,
259
292
(
2006
).
27.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Nonmonotonic flow curves of shear thickening suspensions
,”
Phys. Rev. E
91
,
052302
(
2015
).
28.
A.
Ramachandran
and
D. T.
Leighton
, Jr.
, “
Viscous resuspension in a tube: The impact of secondary flows resulting from second normal stress differences
,”
Phys. Fluids
19
,
053301
(
2007
).
29.
F.
Boyer
,
O.
Pouliquen
, and
É.
Guazzelli
, “
Dense suspensions in rotating-rod flows: Normal stresses and particle migration
,”
J. Fluid Mech.
686
,
5
25
(
2011
).
30.
Y.
Wang
,
R.
Mauri
, and
A.
Acrivos
, “
Transverse shear-induced gradient diffusion in a dilute suspension of spheres
,”
J. Fluid Mech.
357
,
279
287
(
1998
).
31.
F.
Gadala-Maria
and
A.
Acrivos
, “
Shear-induced structure in a concentrated suspension of solid spheres
,”
J. Rheol.
24
,
799
814
(
1980
).
32.
F.
Blanc
,
F.
Peters
, and
E.
Lemaire
, “
Local transient rheological behavior of concentrated suspensions
,”
J. Rheol.
55
,
835
854
(
2011
).
33.
N. Y. C.
Lin
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
34.
F.
Peters
,
G.
Ghigliotti
,
S.
Gallier
,
F.
Blanc
,
E.
Lemaire
, and
L.
Lobry
, “
Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: A numerical study
,”
J. Rheol.
60
,
715
732
(
2016
).
35.
S. H.
Maron
and
P. E.
Pierce
, “
Application of Ree-Eyring generalized flow theory to suspensions of spherical particles
,”
J. Colloid Sci.
11
,
80
95
(
1956
).
36.
I. M.
Krieger
and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
37.
E.
D’Ambrosio
,
F.
Blanc
,
F.
Peters
,
L.
Lobry
, and
E.
Lemaire
, “
Viscous resuspension of non-Brownian particles: Determination of the concentration profiles and particle normal stresses
,” e-print arXiv:1907.01793 (
2019
).
38.
J. F.
Richardson
and
W. N.
Zaki
, “
Sedimentation and fluidisation: Part I
,”
Chem. Eng. Res. Des.
75
,
S82
S100
(
1997
).
39.
S.
Jana
,
B.
Kapoor
, and
A.
Acrivos
, “
Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles
,”
J. Rheol.
39
,
1123
1132
(
1995
).
40.
B.
Andreotti
,
Y.
Forterre
, and
O.
Pouliquen
,
Granular Media: Between Fluid and Solid
(
Cambridge University Press
,
2013
).
You do not currently have access to this content.