Triple-layer core-annular flow is a novel methodology for efficient heavy oil transportation. As usual, high shear rates concentrating in a lubricating fluid layer reduce the pressure drop significantly. Novel is the use of a viscoplastic fluid bounding the lubricant and protecting the transported core. For sufficiently large yield stress, the skin remains unyielded, preventing any interfacial instabilities. By shaping the skin, we generate lubrication forces to counterbalance buoyancy of the core fluid, i.e., an eccentric position of the core is the result of buoyancy and lubrication forces balancing. Here, we extend the feasibility of this method to large pipes and higher flow rates by considering the effects of inertia and turbulence in the lubrication layer. We show that the method can generate enough lubrication force to balance the buoyancy force for a wide range of density differences and pipe sizes if the proper shape is imposed on the unyielded skin.

1.
M. E.
Charles
,
G. W.
Govier
, and
G. W.
Hodgson
, “
The horizontal pipeline flow of equal density oil-water mixtures
,”
Can. J. Chem. Eng.
39
,
27
36
(
1961
).
2.
C.
Kouris
and
J.
Tsamopoulos
, “
Dynamics of axisymmetric core-annular flow in a straight tube. I. The more viscous fluid in the core, bamboo waves
,”
Phys. Fluids
13
,
841
858
(
2001
).
3.
C.
Kouris
and
J.
Tsamopoulos
, “
Dynamics of the axisymmetric core-annular flow. II. The less viscous fluid in the core, saw tooth waves
,”
Phys. Fluids
14
,
1011
1029
(
2002
).
4.
R. V. A.
Oliemans
and
G.
Ooms
, “
Core-annular flow of oil and water through a pipeline
,” in
Multiphase Science and Technology: Volume 2
(
Springer Berlin Heidelberg
,
1986
), Chap. 6, pp.
427
476
.
5.
D. D.
Joseph
and
Y. Y.
Renardy
,
Fundamentals of Two-Fluid Dynamics, Part II: Lubricated Transport, Drops and Miscible Liquids
(
Springer
,
New York
,
1993
).
6.
D. D.
Joseph
,
R.
Bai
,
K. P.
Chen
, and
Y. Y.
Renardy
, “
Core-annular flows
,”
Annu. Rev. Fluid Mech.
29
,
65
90
(
1997
).
7.
K. C.
Sahu
, “
Double-diffusive instability in core-annular pipe flow
,”
J. Fluid Mech.
789
,
830
855
(
2016
).
8.
G.
Chattopadhyay
,
R.
Usha
, and
K. C.
Sahu
, “
Core-annular miscible two-fluid flow in a slippery pipe: A stability analysis
,”
Phys. Fluids
29
,
097106
(
2017
).
9.
S.
Tripathi
,
R. F.
Tabor
,
R.
Singh
, and
A.
Bhattacharya
, “
Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows
,”
Phys. Fluids
29
,
082109
(
2017
).
10.
P.
Sarmadi
,
S.
Hormozi
, and
I. A.
Frigaard
, “
Triple-layer configuration for stable high-speed lubricated pipeline transport
,”
Phys. Rev. Fluids
2
,
044302
(
2017
).
11.
M. A.
Moyers-Gonzalez
,
I. A.
Frigaard
, and
C.
Nouar
, “
Nonlinear stability of a visco-plastically lubricated viscous shear flow
,”
J. Fluid Mech.
506
,
117
146
(
2004
).
12.
S.
Hormozi
,
K.
Wielage-Burchard
, and
I. A.
Frigaard
, “
Entry, start up and stability effects in visco-plastically lubricated pipe flows
,”
J. Fluid Mech.
673
,
432
467
(
2011
).
13.
I. A.
Frigaard
, “
Super-stable parallel flows of multiple visco-plastic fluids
,”
J. Non-Newtonian Fluid Mech.
100
,
49
75
(
2001
).
14.
S.
Hormozi
and
I. A.
Frigaard
, “
Nonlinear stability of a visco-plastically lubricated viscoelastic fluid flow
,”
J. Non-Newtonian Fluid Mech.
169-170
,
61
73
(
2012
).
15.
M.
Moyers-Gonzalez
,
I. A.
Frigaard
, and
C.
Nouar
, “
Stable two-layer flows at all Re; visco-plastic lubrication of shear-thinning and viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
165
,
1578
1587
(
2010
).
16.
K. C.
Sahu
and
O. K.
Matar
, “
Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid
,”
Phys. Fluids
22
,
112103
(
2010
).
17.
C. K.
Huen
,
I. A.
Frigaard
, and
D. M.
Martinez
, “
Experimental studies of multi-layer flows using a visco-plastic lubricant
,”
J. Non-Newtonian Fluid Mech.
142
,
150
161
(
2007
).
18.
S.
Hormozi
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Stable core-annular flows of viscoelastic fluids using the visco-plastic lubrication technique
,”
J. Non-Newtonian Fluid Mech.
166
,
1356
1368
(
2011
).
19.
S.
Hormozi
,
K.
Wielage-Burchard
, and
I. A.
Frigaard
, “
Multi-layer channel flows with yield stress fluids
,”
J. Non-Newtonian Fluid Mech.
166
,
262
278
(
2011
).
20.
G.
Ooms
and
H. L.
Beckers
, “
The flow of a rigid core surrounded by an annular liquid layer through a horizontal tube
,”
Appl. Sci. Res.
26
,
321
334
(
1972
).
21.
G.
Ooms
,
A.
Segal
,
A. J.
van der Wees
,
R.
Meerhoff
, and
R. V. A.
Oliemans
, “
A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe
,”
Int. J. Multiphase Flow
10
,
41
60
(
1983
).
22.
K.
Bai
,
R.
Chen
, and
D. D.
Joseph
, “
Lubricated pipelining: Stability of core-annular flow. Part 5. Experiments and comparison with theory
,”
J. Fluid Mech.
240
,
97
132
(
1992
).
23.
G.
Ooms
,
C.
Vuik
, and
P.
Poesio
, “
Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core
,”
Phys. Fluids
19
,
092103
(
2007
).
24.
G.
Ooms
,
M. J. B. M.
Pourquie
, and
J. C.
Beerens
, “
On the levitation force in horizontal core-annular flow with a large viscosity ratio and small density ratio
,”
Phys. Fluids
25
,
032102
(
2013
).
25.
G.
Ooms
and
P.
Poesio
, “
Analytical study of slightly eccentric core-annular flow
,”
J. Eng. Math.
85
,
65
81
(
2014
).
26.
S.
Hormozi
,
G.
Dunbrack
, and
I. A.
Frigaard
, “
Visco-plastic sculpting
,”
Phys. Fluids
26
,
093101
(
2014
).
27.
P.
Sarmadi
,
S.
Hormozi
, and
I. A.
Frigaard
, “
Flow development and interface sculpting in stable lubricated pipeline transport
,”
J. Non-Newtonian Fluid Mech.
261
,
60
80
(
2018
).
28.
G.
Ooms
,
M. J. B. M.
Pourquie
, and
P.
Poesio
, “
Numerical study of eccentric core-annular flow
,”
Int. J. Multiphase Flow
42
,
74
79
(
2012
).
29.
H. I.
You
and
S. S.
Lu
, “
The effect of fluid inertia on the operating characteristics of a journal bearing
,”
J. Tribol.
110
,
499
(
1988
).
30.
A. Z.
Szeri
and
A.
Al-Sharif
, “
Flow between finite, steadily rotating eccentric cylinders
,”
Theor. Comput. Fluid Dyn.
7
,
1
28
(
1995
).
31.
V. N.
Constantinescu
,
Laminar Viscous Flow
(
Springer
,
New York
,
1995
).
32.
A. Z.
Szeri
,
Fluid Film Lubrication: Theory and Design
(
Cambridge University Press
,
New York
,
1998
).
33.
E.
Kim
and
A. Z.
Szeri
, “
On the combined effects of lubricant inertia and viscous dissipation in long bearings
,”
J. Tribol.
119
,
76
(
1997
).
34.
C. W.
Ng
and
C. H. T.
Pan
, “
A linearized turbulent lubrication theory
,”
J. Basic Eng.
87
,
675
(
1965
).
35.
V. N.
Constantinescu
and
S.
Galetuse
, “
Operating characteristics of journal bearings in turbulent inertial flow
,”
J. Lubr. Technol.
104
,
173
(
1982
).
36.
M. K.
Ho
and
J. H.
Vohr
, “
Application of energy model of turbulence to calculation of lubricant flows
,”
J. Lubr. Technol.
96
,
95
(
1974
).
37.
M.
Tanaka
and
K.
Hatakenaka
, “
Turbulent thermohydrodynamic lubrication models compared with measurements
,”
Proc. Inst. Mech. Eng., Part J
218
,
391
399
(
2004
).
38.
K. O.
Lund
and
W. B.
Bush
, “
Asymptotic analysis of plane turbulent Couette-Poiseuille flows
,”
J. Fluid Mech.
96
,
81
104
(
1980
).
39.
W.
Gretler
and
W.
Meile
, “
Calculation of plane turbulent Couette-Poiseuille flows with a modified k-ε model
,”
Fluid Dyn. Res.
21
,
263
283
(
1997
).
40.
E. M.
Thurlow
and
J. C.
Klewicki
, “
Experimental study of turbulent Poiseuille-Couette flow
,”
Phys. Fluids
12
,
865
875
(
2000
).
41.
K.
Nakabayashi
,
O.
Kitoh
, and
Y.
Katoh
, “
Similarity laws of velocity profiles and turbulence characteristics of Couette-Poiseuille turbulent flows
,”
J. Fluid Mech.
507
,
43
69
(
2004
).
42.
J. H.
Kim
and
J. H.
Lee
, “
Direct numerical simulation of a turbulent Couette-Poiseuille flow: Turbulent statistics
,”
Int. J. Heat Fluid Flow
72
,
288
303
(
2018
).
43.
Y. M.
Lee
,
J. H.
Kim
, and
J. H.
Lee
, “
Direct numerical simulation of a turbulent Couette-Poiseuille flow with a rod-roughened wall
,”
Phys. Fluids
30
,
105101
(
2018
).
44.
K. O.
Lund
, “
Fully developed turbulent flow and heat transfer at fiber-flocked surfaces
,”
Int. J. Heat Mass Transfer
44
,
3799
3810
(
2001
).
45.
W. A.
Zahid
,
Y.
Yin
, and
K.-Q.
Zhu
, “
Couette-Poiseuille flow of a gas in long microchannels
,”
Microfluid. Nanofluid.
3
,
55
64
(
2006
).
46.
A. F.
Hussain
and
W. C.
Reynolds
, “
Measurements in fully developed turbulent channel flow
,”
J. Fluids Eng.
97
,
568
578
(
1975
).
47.
P.
Sarmadi
and
I. A.
Frigaard
, “
Stable core-annular horizontal flows in inaccessible domains via a triple-layer configuration
,”
Chem. Eng. Sci.: X
3
,
100028
(
2019
).
48.
A.
Harten
, “
High resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
,
357
393
(
1983
).
49.
G. D.
van Albada
,
B.
van Leer
, and
W. W.
Roberts
, “
A comparative study of computational methods in cosmic gas dynamics
,” in
Upwind and High-Resolution Schemes
(
Springer Berlin-Heidelberg
,
1997
), pp.
95
103
.
You do not currently have access to this content.