In this work, the flow normal to a rectangular flat plate with sharp angles in the presence of the free surface and gravity has been studied numerically, using a three dimensional (3D) large Eddy simulation methodology. Most of the previous studies on this geometry consider either periodic assumptions or laminar regime ReO(103). The numerical study described here, with a fully 3D simulation of the flat plate in turbulent regime ReO(105), had not been reported earlier. Important differences have been found with respect to the laminar case or when periodic boundary conditions are assumed. The influence of the gravity force and the free surface interface on the hydrodynamics of the problem is extremely relevant for industrial applications. The simulations are initially validated using a reference case with a plate with sharp corners and a single phase laminar 3D-periodic configuration. The time averaged drag force, the velocity, and pressure fields are compared as well against the case of the plate with smooth corners. Finally, in the case of the two-phase 3D numerical simulations, the drag force and the vorticity fields in the near wake of the plate are compared to recent experimental work [S. Satheesh and F. J. Huera-Huarte, “Effect of the free surface on a flat plate translating normal to the flow,” Ocean Eng. 171, 458–468 (2019)]. These experiments were used as a guideline for the computational setup; consequently, the values of most of the dimensionless parameters are the same. A second scenario where the free surface is replaced by a solid wall is considered. Two important observations show up after this research: first, the characteristic unsteady frequencies that are found associated with two periodic regimes disappear when 3D cases are evaluated. In such a scenario, no dominant frequencies are found. Second, a critical submergence depth (distance) between the upper part of the plate and the free surface (or solid wall) has been found, where the drag force shows a maximum value. These observations are discussed in relation to the pressure distribution, the vortex structures formed at the wake, and the gap flow formed between the plate and the free surface.

1.
Bouscasse
,
B.
,
Colagrossi
,
A.
,
Marrone
,
S.
, and
Souto-Iglesias
,
A.
, “
SPH modelling of viscous flow past a circular cylinder interacting with a free surface
,”
Comput. Fluids
146
,
190
212
(
2017
).
2.
Díaz-Ojeda
,
H.
,
González
,
L.
, and
Huera-Huarte
,
F.
, “
Fluid structure interaction simulations involving free surface
,” in
Proccedings of the International Conference on Ocean, Offshore, and Arctic Engineering
(
ASME
,
2018
), Paper No. OMAE2018 77207.
3.
Díaz-Ojeda
,
H.
,
González
,
L.
, and
Huera-Huarte
,
F.
, “
On the influence of the free surface on a stationary circular cylinder with a flexible splitter plate in laminar regime
,”
J. Fluids Struct.
87
,
102
123
(
2019
).
4.
Fage
,
A.
and
Johansen
,
F.
, “
On the flow of air behind an inclined flat plate of infinite span
,”
Proc. R. Soc. London, Ser. A
116
(
773
),
170
197
(
1927
).
5.
González-Gutiérrez
,
L. M.
,
Gimenez
,
J. M.
, and
Ferrer
,
E.
, “
Instability onset for submerged cylinders
,”
Phys. Fluids
31
(
4
),
014106
(
2019
).
6.
Hemmati
,
A.
,
Wood
,
D. H.
, and
Martinuzzi
,
R. J.
, “
Characteristics of distinct flow regimes in the wake of an infinite span normal thin flat plate
,”
Int. J. Heat Fluid Flow
62
,
423
(
2016a
).
7.
Hemmati
,
A.
,
Wood
,
D. H.
, and
Martinuzzi
,
R. J.
, “
Effect of side edge vortices and secondary induced flow on the wake of normal thin flat plates
,”
Int. J. Heat Fluid Flow
61
,
197
(
2016b
).
8.
Hemmati
,
A.
,
Wood
,
D. H.
, and
Martinuzzi
,
R. J.
, “
On simulating the flow past a normal thin flat plate
,”
J. Wind Eng. Ind. Aerodyn.
174
,
170
187
(
2018
).
9.
Jeong
,
J.
and
Hussain
,
F.
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
10.
Kravchenko
,
G. A.
and
Parviz
,
M.
, “
Numerical studies of flow over a circular cylinder at ReD=3900
,”
Phys. Fluids
12
(
2
),
403
417
(
2000
).
11.
Liu
,
I.-H.
,
Riglin
,
J.
,
Schleicher
,
W. C.
, and
Oztekin
,
A.
, “
Flow past a plate in the vicinity of a free surface
,”
Ocean Eng.
111
,
323
334
(
2016
).
12.
Malavasi
,
S.
and
Guadagnini
,
A.
, “
Interactions between a rectangular cylinder and a free-surface flow
,”
J. Fluids Struct.
23
(
4
),
1137
1148
(
2007
), Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-5).
13.
Miyata
,
H.
,
Shikazono
,
N.
, and
Kanai
,
M.
, “
Forces on a circular cylinder advancing steadily beneath the free-surface
,”
Ocean. Eng.
17
(
1
),
81
104
(
1990
).
14.
Najjar
,
F. M.
and
Balachandar
,
S.
, “
Low-frequency unsteadiness in the wake of a normal flat plate
,”
J. Fluid Mech.
370
,
101
147
(
1998
).
15.
Najjar
,
F. M.
and
Vanka
,
S. P.
, “
Simulations of the unsteady separated flow past a normal flat plate
,”
Int. J. Num. Met. Fluids
21
,
525
(
1995
).
16.
Narasimhamurthy
,
V. D.
and
Andersson
,
H. I.
, “
Numerical simulation of the turbulent wake behind a normal flat plate
,”
Int. J. Heat Fluid Flow
30
(
6
),
1037
1043
(
2009
).
17.
Nicoud
,
F.
and
Ducros
,
F.
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
(
3
),
183
200
(
1999
).
18.
OpenFOAM
, https://sourceforge.net/projects/openfoam-extend/, OpenFOAM Extend,
2018
.
19.
Oro
,
J. M. F.
,
Técnicas Numéricas en Ingeniería de Fluidos. Introducción a la Dinámica de Fluidos Computacional (CFD), por el Método de Volúmenes Finitos
(
Reverté
,
2012
).
20.
Reichl
,
P.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
, “
Flow past a cylinder close to a free surface
,”
J. Fluid Mech.
533
,
269
296
(
2005
).
21.
Satheesh
,
S.
and
Huera-Huarte
,
F. J.
, “
Effect of free surface on a flat plate translating normal to the flow
,”
Ocean. Eng.
171
,
458
468
(
2019
).
22.
Sheridan
,
J.
,
Lin
,
J.-C.
, and
Rockwell
,
D.
, “
Flow past a cylinder close to a free surface
,”
J. Fluid Mech.
330
,
1
30
(
1997
).
23.
Smagorinsky
,
J.
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
24.
Taneda
,
S.
and
Honji
,
H.
, “
Unsteady flow past a flat plate normal to the direction of motion
,”
J. Phys. Soc. Jpn.
30
,
262
(
1971
).
25.
Tian
,
X.
,
Ong
,
M. C.
,
Yang
,
J.
, and
Myrhaug
,
D.
, “
Large-eddy simulation of the flow normal to a flat plate including corner effects at a high Reynolds number
,”
J. Fluids Struct.
49
,
149
169
(
2014
).
26.
Tian
,
X.
,
Ong
,
M. C.
,
Yang
,
J.
,
Myrhaug
,
D.
, and
Chen
,
G.
, “
Three dimensional effects of the flow normal to a flat plate at a high Reynolds number
,” in
Proccedings of the International Conference on Ocean, Offshore, and Arctic Engineering
(
ASME
,
2012
), Paper No. OMAE2012-83730, p.
847
.
27.
Versteeg
,
H. K.
and
Malalasekera
,
W.
, “
An introduction to computational fluid dynamics
,” in
The Finite Volume Method
(
Pearson Education, Ltd.
,
2007
).
You do not currently have access to this content.