Vortex-shedding from micropins has the potential to significantly enhance and intensify scalar transport in microchannels, for example by improving species mixing. However, the onset of vortex-shedding and the mixing efficiency are highly sensitive to the confinement imposed by the microchannel walls. In this work, the time dependent flow past a cylindrical pin in microchannels with different levels of confinement was studied experimentally. The onset of vortex-shedding in such flows is associated with high, kilohertz range frequencies that are difficult to resolve using conventional laser-based microscale particle image velocimetry (μPIV) techniques. Hence, in this study, a high-speed μPIV technique was implemented in order to obtain time-resolved measurements of the velocity fields downstream of the micropin to estimate the corresponding vortex-shedding frequencies and quantify the mixing in the pin wake. The vertical confinement (pin length to diameter ratio) was found to delay the onset of vortex-shedding. When vortex-shedding was present, the shedding frequency and the corresponding Strouhal numbers were found to be greater in channels with higher lateral confinement for the same Reynolds number. Finite-time Lyapunov exponent analysis was performed on the acquired velocity fields to estimate the mixing performance. The results clearly illustrated the significant enhancement in both the mixing in the wake and the mass flux across the centerline of the wake induced by vortex-shedding.

1.
N.-T.
Nguyen
and
Z.
Wu
, “
Micromixers—A review
,”
J. Micromech. Microeng.
15
,
R1
(
2005
).
2.
A.
Renfer
,
M. K.
Tiwari
,
F.
Meyer
,
T.
Brunschwiler
,
B.
Michel
, and
D.
Poulikakos
, “
Vortex shedding from confined micropin arrays
,”
Microfluid. Nanofluid.
15
,
231
(
2013
).
3.
N.
Cagney
and
S.
Balabani
, “
Lagrangian structures and mixing in the wake of a streamwise oscillating cylinder
,”
Phys. Fluids
28
,
045107
(
2016
).
4.
A.
Renfer
,
M. K.
Tiwari
,
R.
Tiwari
,
F.
Alfieri
,
T.
Brunschwiler
,
B.
Michel
, and
D.
Poulikakos
, “
Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks
,”
Int. J. Heat Mass Transfer
65
,
33
(
2013
).
5.
B.
Cantwell
and
D.
Coles
, “
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
,”
J. Fluid Mech.
136
,
321
(
1983
).
6.
J. H.
Gerrard
, “
The mechanics of the formation region of vortices behind bluff bodies
,”
J. Fluid Mech.
25
,
401
(
1966
).
7.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
(
1996
).
8.
V. M.
Ribeiro
,
P. M.
Coelho
,
F. T.
Pinho
, and
M. A.
Alves
, “
Three-dimensional effects in laminar flow past a confined cylinder
,”
Chem. Eng. Sci.
84
,
155
(
2012
).
9.
M. D.
Griffith
,
J.
Leontini
,
M. C.
Thompson
, and
K.
Hourigan
, “
Vortex shedding and three-dimensional behaviour of flow past a cylinder confined in a channel
,”
J. Fluid Struct.
27
,
855
(
2011
).
10.
M.
Sahin
and
R. G.
Owens
, “
A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder
,”
Phys. Fluids
16
,
1305
(
2004
).
11.
S.
Singha
and
K. P.
Sinhamahapatra
, “
Flow past a circular cylinder between parallel walls at low Reynolds numbers
,”
Ocean Eng.
37
,
757
(
2010
).
12.
S.
Turki
,
H.
Abbassi
, and
S. B.
Nasrallah
, “
Effect of the blockage ratio on the flow in a channel with a built-in square cylinder
,”
Comput. Mech.
33
,
22
(
2003
).
13.
R. W.
Davis
,
E. F.
Moore
, and
L. P.
Purtell
, “
A numerical-experimental study of confined flow around rectangular cylinders
,”
Phys. Fluids
27
,
46
(
1984
).
14.
O.
Inoue
and
A.
Sakuragi
, “
Vortex shedding from a circular cylinder of finite length at low Reynolds numbers
,”
Phys. Fluids
20
,
033601
(
2008
).
15.
T.
Lee
and
R.
Budwig
, “
A study of the effect of aspect ratio on vortex shedding behind circular cylinders
,”
Phys. Fluids
3
,
309
(
1991
).
16.
A.
Sohankar
,
C.
Norberg
, and
L.
Davidson
, “
Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers
,”
Phys. Fluids
11
,
288
(
1999
).
17.
F.
Rehimi
,
F.
Aloui
,
S. B.
Nasrallah
,
L.
Doubliez
, and
J.
Legrand
, “
Experimental investigation of a confined flow downstream of a circular cylinder centred between two parallel walls
,”
J. Fluid Struct.
24
,
855
(
2008
).
18.
J.
Jung
,
C.-J.
Kuo
,
Y.
Peles
, and
M.
Amitay
, “
The flow field around a micropillar confined in a microchannel
,”
Int. J. Heat Fluid Flow
36
,
118
(
2012
).
19.
M.
Reyes
,
A.
Velazquez
,
E.
Martin
, and
J. R.
Arias
, “
Experimental study on the confined 3D laminar flow past a square prism with a high blockage ratio
,”
Int. J. Heat Fluid Flow
44
,
444
(
2013
).
20.
A.
Renfer
,
M. K.
Tiwari
,
T.
Brunschwiler
,
B.
Michel
, and
D.
Poulikakos
, “
Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics
,”
Exp. Fluids
51
,
731
(
2011
).
21.
S. M.
Hagsäter
,
C. H.
Westergaard
,
H.
Bruus
, and
J. P.
Kutter
, “
Investigations on LED illumination for micro-PIV including a novel front-lit configuration
,”
Exp. Fluids
44
,
211
(
2008
).
22.
J. M.
Sherwood
,
D.
Holmes
,
E.
Kaliviotis
, and
S.
Balabani
, “
Spatial distributions of red blood cells significantly alter local haemodynamics
,”
PLoS One
9
,
e100473
(
2014
).
23.
B. J.
Gemmell
,
H.
Jiang
, and
E. J.
Buskey
, “
A new approach to micro-scale particle image velocimetry (µPIV) for quantifying flows around free-swimming zooplankton
,”
J. Plankton Res.
36
,
1396
(
2014
).
24.
M.
Riccomi
,
F.
Alberini
,
E.
Brunazzi
, and
D.
Vigolo
, “
Ghost particle velocimetry as an alternative to μPIV for micro/milli-fluidic devices
,”
Chem. Eng. Res. Des.
133
,
183
(
2018
).
25.
A.
Bamshad
,
A.
Nikfarjam
, and
H.
Khaleghi
, “
A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices
,”
J. Micromech. Microeng.
26
,
065017
(
2016
).
26.
S.
Pothos
,
A.
Boomsma
,
D.
Troolin
,
S.
Bhattacharya
, and
P.
Vlachos
,
Fora: Advances in Fluids Engineering Education, Cavitation and Multiphase Flow
, Fluid Measurements and Instrumentation Vol. 2 (
ASME
,
Washington, DC, USA
,
2016
), p.
V002T10A005
.
27.
M. G.
Olsen
and
R. J.
Adrian
, “
Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry
,”
Exp. Fluids
29
,
S166
(
2000
).
28.
M. R.
Rastan
,
A.
Sohankar
, and
Md. M.
Alam
, “
Low-Reynolds-number flow around a wall-mounted square cylinder: Flow structures and onset of vortex shedding
,”
Phys. Fluids
29
,
103601
(
2017
).
29.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
Oxford, New York
,
2008
).
30.
P. J.
Strykowski
and
K. R.
Sreenivasan
, “
On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers
,”
J. Fluid Mech.
218
,
71
(
1990
).
31.
F. H.
Shair
,
A. S.
Grove
,
E. E.
Petersen
, and
A.
Acrivos
, “
The effect of confining walls on the stability of the steady wake behind a circular cylinder
,”
J. Fluid Mech.
17
,
546
(
1963
).
32.
S.
Balachandar
,
R.
Mittal
, and
F. M.
Najjar
, “
Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies
,”
J. Fluid Mech.
351
,
167
(
1997
).
33.
U.
Fey
,
M.
König
, and
H.
Eckelmann
, “
A new Strouhal–Reynolds-number relationship for the circular cylinder in the range 47<Re<2×105
,”
Phys. Fluids
10
,
1547
(
1998
).
34.
C.
Liang
and
G.
Papadakis
, “
Large eddy simulation of cross-flow through a staggered tube bundle at subcritical Reynolds number
,”
J. Fluid Struct.
23
,
1215
(
2007
).
35.
S.
Balabani
and
M.
Yianneskis
, “
An experimental study of the mean flow and turbulence structure of cross-flow over tube bundles
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
210
,
317
(
1996
).
36.
F.
Alfieri
,
M. K.
Tiwari
,
A.
Renfer
,
T.
Brunschwiler
,
B.
Michel
, and
D.
Poulikakos
, “
Computational modeling of vortex shedding in water cooling of 3D integrated electronics
,”
Int. J. Heat Fluid Flow
44
,
745
(
2013
).
37.
S. C.
Shadden
,
F.
Lekien
, and
J. E.
Marsden
, “
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
,”
Physica D
212
,
271
(
2005
).
38.
D.
Kadylak
,
P.
Cave
, and
W.
Mérida
, “
Effectiveness correlations for heat and mass transfer in membrane humidifiers
,”
Int. J. Heat Mass Transfer
52
,
1504
(
2009
).
39.
S. R.
Gundlapally
and
V.
Balakotaiah
, “
Heat and mass transfer correlations and bifurcation analysis of catalytic monoliths with developing flows
,”
Chem. Eng. Sci.
66
,
1879
(
2011
).

Supplementary Material

You do not currently have access to this content.