The study of fluid flow characteristics in collapsible elastic tubes is useful to understand biofluid mechanics encountered in the human body. The research work presented here is aimed at thoroughly investigating the influence of both Newtonian and/or non-Newtonian fluids (low and high shear thinning) during steady flow through an elastic tube on various tube deformations, which enables understanding of the interaction between wall motion, fluid flow, and intestinal transmembrane mass transfer as a crucial contribution to a mechanistic understanding of bioaccessibility/bioavailability. It is observed that for a given steady volume flow rate, the tube is buckled from an elliptical shape to a line or area contacted two lobes as the critical external pressure is increased. The downstream transmural pressure is found to get more negative than that at the upstream as the outlet pressure decreased due to stronger tube collapse resulting in a reduced cross-sectional area. The experimental results depict that the tube cross-sectional area decreased by only about a factor of one for PEG (polyethylene glycol) and about a factor of six for both CMC (carboxymethyl cellulose) and PAA (polyacrylamide) from the undeformed one under an applied external pressure of 105 mbar. The corresponding maximum velocity increased by a factor of two during steady flow of shear-thinning fluids. The shear-thinning behavior of both CMC and PAA solutions is clearly observed at a constant flow rate of 17 ml/s as the tube cross-sectional area decreased due to an increase in compressive transmural pressure. In addition, the viscosity of PAA is drastically decreased due to its high shear-thinning behavior than that of the CMC under the same applied external pressure.

1.
Amaouche
,
M.
and
Labbio
,
G. D.
, “
Linear and weakly nonlinear global instability of a fluid flow through a collapsible channel
,”
Phys. Fluids
28
,
044106
(
2016
).
2.
Anand
,
V.
,
David
,
J.
, and
Christov
,
I. C.
, “
Non-Newtonian fluid-structure interactions: Static response of a microchannel due to internal flow of a power-law fluid
,”
J. Non-Newtonian Fluid Mech.
264
,
62
72
(
2019
).
3.
Bertram
,
C. D.
, “
Unstable equilibrium behaviour in collapsible tubes
,”
J. Biomech.
19
,
61
69
(
1986
).
4.
Bertram
,
C. D.
, “
The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes
,”
J. Biomech.
20
,
863
876
(
1987
).
5.
Bertram
,
C. D.
,
Raymond
,
C. J.
, and
Pedley
,
T. J.
, “
Mapping of instabilities during flow through collapsed tubes of differing length
,”
J. Fluids Struct.
4
,
125
153
(
1990
).
6.
Bertram
,
C. D.
and
Ribreau
,
C.
, “
Cross-sectional area measurement in collapsed tubes using the transformer principle
,”
Med. Biol. Eng. Comput.
27
,
357
364
(
1989
).
7.
Bertram
,
C. D.
and
Tscherry
,
J.
, “
The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes
,”
J. Fluids Struct.
22
,
1029
1045
(
2006
).
8.
Brooks
,
C.
and
Luckhardt
,
A. B.
, “
The chief physical mechanisms concerned in clinical methods of measuring blood pressure
,”
Am. J. Physiol.
40
,
49
74
(
1916
).
9.
Cherry
,
E. M.
and
Eaton
,
J. K.
, “
Shear-thinning effects on blood flow in straight and curved tubes
,”
Phys. Fluids
25
,
073104
(
2013
).
10.
Conrad
,
W. A.
, “
Pressure-flow relationships in collapsible tubes
,”
IEEE Trans. Biomed. Eng.
16
,
284
295
(
1969
).
11.
Dodson
,
A. G.
,
Townsend
,
P.
, and
Walters
,
K.
, “
Non-Newtonian flow in pipes of non-circular cross section
,”
Comput. Fluids
2
,
317
338
(
1974
).
12.
Elad
,
D.
,
Roger
,
D. K.
, and
Shapiro
,
A. H.
, “
Choking phenomena in a lung like model
,”
J. Biomech. Eng.
109
,
19
(
1987
).
13.
Elad
,
D.
,
Sahar
,
M.
,
Avidor
,
J. M.
, and
Einav
,
S.
, “
Steady flow through collapsible tubes: Measurements of flow and geometry
,”
J. Biomech. Eng.
114
,
84
91
(
1992
).
14.
Elad
,
D.
,
Sahar
,
M.
,
Einav
,
S.
,
Avidor
,
J. M.
,
Zelster
,
R.
, and
Rosenberg
,
N.
, “
A novel non-contact technique for measuring complex surface shapes under dynamic conditions
,”
J. Phys. E: Sci. Instrum.
22
,
279
282
(
1989
).
15.
Flaherty
,
J. E.
,
Keller
,
J. B.
, and
Rubinow
,
S. I.
, “
Post buckling behavior of elastic tubes and rings with opposite sides in contact
,”
SIAM J. Appl. Math.
23
,
446
455
(
1972
).
16.
Gavriely
,
N.
,
Shee
,
T. R.
,
Cuggel
,
D. W.
, and
Grotberg
,
J. B.
, “
Flutter inflow limited collapsible tubes: A mechanism for generation of wheezes
,”
J. Appl. Physiol.
66
,
2251
2261
(
1989
).
17.
Ghazy
,
M.
,
Elgindi
,
M. B.
, and
Wei
,
D.
, “
Analytical and numerical investigations of the collapse of blood vessels with nonlinear wall material embedded in nonlinear soft tissues
,”
Alexandria Eng. J.
57
(
4
),
3437
3450
(
2018
).
18.
Green
,
D. W.
and
Perry
,
R. H.
,
Perry’s Chemical Engineers’ Handbook
(
McGraw-Hill
,
New York
,
2008
).
19.
Grotberg
,
J. B.
and
Jensen
,
O. E.
, “
Biofluid mechanics in flexible tubes
,”
Annu. Rev. Fluid Mech.
36
,
121
147
(
2004
).
20.
Hazel
,
A. L.
and
Heil
,
M.
, “
Steady finite-Reynolds-number flows in three dimensional collapsible tubes
,”
J. Fluid Mech.
486
,
79
103
(
2003
).
21.
Heil
,
M.
, “
Stokes flow in collapsible tubes: Computation and experiment
,”
J. Fluid Mech.
353
,
285
312
(
1997
).
22.
Heil
,
M.
, “
Stokes flow in an elastic tube—A large-displacement fluid-structure interaction problem
,”
Int. J. Numer. Methods Fluids
28
,
243
265
(
1998
).
23.
Heil
,
M.
and
Pedley
,
T. J.
, “
Large post-buckling deformations of cylindrical shells conveying viscous flows
,”
J. Fluids Struct.
10
,
565
599
(
1996
).
24.
Holt
,
J. P.
, “
The collapse factor in the measurement of venous pressure: The flow of fluid through collapsible tubes
,”
Am. J. Physiol.
134
,
292
299
(
1941
).
25.
Holt
,
J. P.
, “
Flow of liquids through collapsible tubes
,”
Circ. Res.
7
,
342
353
(
1959
).
26.
Jensen
,
O. E.
and
Pedley
,
T. J.
, “
The existence of steady flow in a collapsed tube
,”
J. Fluid Mech.
206
,
339
374
(
1989
).
27.
Kamm
,
R. D.
and
Pedley
,
T. J.
, “
Flow in collapsible tubes: A brief review
,”
J. Biomech. Eng.
111
,
177
179
(
1989
).
28.
Katz
,
A. I.
,
Chen
,
Y.
, and
Moreno
,
A. H.
, “
Flow through a collapsible tube
,”
Biophys. J.
9
,
1261
1279
(
1969
).
29.
Kececioglu
,
I.
,
McClurken
,
M. E.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
, “
Steady, supercritical flow in collapsible tubes. Part 1. Experimental observations
,”
J. Fluid Mech.
109
,
367
389
(
1981
).
30.
Knowlton
,
F. P.
and
Starling
,
E. H.
, “
The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart
,”
J. Physiol.
44
,
206
219
(
1912
).
31.
Kozlovsky
,
P.
,
Zaretskya
,
U.
,
Jaffab
,
A. J.
, and
Elad
,
D.
, “
General tube law for collapsible thin and thick-wall tubes
,”
J. Biomech.
47
,
2378
2384
(
2014
).
32.
Kresch
,
E.
and
Noordergraaf
,
A.
, “
Cross-sectional shape of collapsible tubes
,”
Biophys. J.
12
,
274
294
(
1972
).
33.
Lighthill
,
J.
,
Mathematical Biofluiddynamics
(
SIAM
,
Philadelphia
,
1975
), ISBN: 978-0-898710-14-4.
34.
Lyon
,
C. K.
,
Scott
,
J. B.
, and
Wang
,
C. Y.
, “
Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model
,”
Circ. Res.
47
,
68
73
(
1980
).
35.
Marzo
,
A.
,
Luo
,
X. Y.
, and
Bertram
,
C. D.
, “
Three-dimensional collapse and steady flow in thick-walled flexible tubes
,”
J. Fluids. Struct.
20
,
817
835
(
2005
).
36.
Meng
,
Y.
,
Rao
,
M. A.
, and
Dutta
,
A. K.
, “
Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids
,”
Food Bioprod. Process.
83
,
297
305
(
2005
).
37.
Nahar
,
S.
,
Jeelani
,
S. A. K.
, and
Windhab
,
E. J.
, “
Influence of elastic tube deformation on flow behavior of a shear thinning fluid
,”
Chem. Eng. Sci.
75
,
445
455
(
2012a
).
38.
Nahar
,
S.
,
Jeelani
,
S. A. K.
, and
Windhab
,
E. J.
, “
Peristaltic flow characterization of a shear thinning fluid through an elastic tube by UVP
,”
Appl. Rheol.
22
(
4
),
43941
(
2012b
).
39.
Nahar
,
S.
,
Jeelani
,
S. A. K.
, and
Windhab
,
E. J.
, “
Prediction of velocity profiles of shear thinning fluids flowing in elastic tubes
,”
Chem. Eng. Commun.
200
(
6
),
820
835
(
2013
).
40.
Neelamegam
,
R.
and
Shankar
,
V.
, “
Experimental study of the instability of laminar flow in a tube with deformable walls
,”
Phys. Fluids
27
(
2
),
024102
(
2015
).
41.
Pedley
,
T. J.
,
The Fluid Mechanics of Large Blood Vessels
(
Cambridge University Press
,
Cambridge
,
1980
).
42.
Raj
,
K. M.
,
Chakraborty
,
J.
,
Gupta
,
S. D.
, and
Chakraborty
,
S.
, “
Flow-induced deformation in a microchannel with a non-Newtonian fluid
,”
Biomicrofluidics
12
,
034116
(
2018
).
43.
Rana
,
J.
and
Murthy
,
P. V. S. N.
, “
Unsteady solute dispersion in Herschel-Bulkley fluid in a tube with wall absorption
,”
Phys. Fluids
28
,
111903
(
2016
).
44.
Roser
,
M. E.
and
Peskin
,
C. S.
, “
Fluid flow in collapsible elastic tubes: A three-dimensional numerical model
,”
N. Y. J. Math.
7
,
281
302
(
2001
).
45.
Rosmery
,
W.
,
Pedley
,
T. J.
, and
Riley
,
D. S.
, “
Viscous flow in collapsible tubes of slowly varying elliptical cross-section
,”
J. Fluid Mech.
81
,
273
294
(
1977
).
46.
Scroggs
,
R. A.
,
Beck
,
S. B. M.
, and
Patterson
,
E. A.
, “
An integrated approach to modelling the fluid-structure interaction of a collapsible tube
,”
JSME Int. J., Ser. B
47
,
20
28
(
2004
).
47.
Shapiro
,
A. H.
, “
Physiologic and medical aspects of flow in collapsible tubes
,” in
Proceedings of 6th Canadian Congress of Applied Mechanics
(
Vancouver
,
1977a
), pp.
883
905
.
48.
Shapiro
,
A. H.
, “
Steady flow in collapsible tubes
,”
J. Biomech. Eng.
99
,
126
147
(
1977b
).
49.
Shapiro
,
A. H.
,
Jaffrin
,
M. Y.
, and
Weinberg
,
S. L.
, “
Peristaltic pumping with long wavelengths at low Reynolds number
,”
J. Fluid Mech.
37
,
799
825
(
1969
).
50.
Tanner
,
F. X.
,
Al-Habahbeh
,
A. A.
,
Feigl
,
K. A.
,
Nahar
,
S.
,
Jeelani
,
S. A. K.
,
Case
,
W. R.
, and
Windhab
,
E. J.
, “
Numerical and experimental investigation of a non-Newtonian flow in a collapsed elastic tube
,”
Appl. Rheol.
22
,
63910
(
2012
).
51.
Unhale
,
S. A.
,
Marino
,
G.
, and
Parameswaran
,
S.
, “
A one dimensional model to predict steady flow through a collapsible tube
,”
Int. J. Comput. Methods Eng. Sci. Mech.
6
,
95
103
(
2005
).
52.
Whittaker
,
R. J.
,
Heil
,
M.
,
Jensen
,
O. E.
, and
Waters
,
S. L.
, “
A rational derivation of a tube law from shell theory
,”
Q. J. Mech. Appl. Math.
63
,
465
496
(
2010
).
53.
Wyk
,
S. V.
,
Wittberg
,
L. P.
,
Bulusu
,
K. V.
,
Fuchs
,
L.
, and
Plesniak
,
M. W.
, “
Non-Newtonian perspectives on pulsatile blood-analog flows in a 180° curved artery model
,”
Phys. Fluids
27
,
071901
(
2015
).
54.
Zhu
,
J.
and
Wang
,
X.
, “
A study of steady and unsteady flow in a collapsible channel
,”
Comput. Fluid Solid Mech.
2003
,
1597
1600
.
You do not currently have access to this content.