For an impact drop on a superheated surface, the dynamic Leidenfrost temperature, TLF, depends on several parameters such as impact velocity, vapor layer thickness, and thermophysical properties of the fluids. In this letter, we derived a scaling formula for TLF using the well-known balance relation between the pressures exerted by drop impact and evaporated vapor flow. As the TLF scale intrinsically requires estimating the vapor film thickness δv, it should be scaled based on the consideration of relevant physics postulated on the impact drop and evaporated vapor. Thus, for proper scaling of δv, we considered the drop–vapor interface deformation by drop inertial and surface tension forces during initial impact of drop. Results showed that δv could be scaled with drop diameter D0 and Weber number We. For drops with low We (<10), δv scaled to ∼D0We−1/4 and ∼D0We−2/5 for drops with higher We. The explicit scale for TLF agreed well with present experimental data.

1.
A. L.
Yarin
, “
Drop impact dynamics: Splahing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
(
2006
).
2.
Y.
Son
,
C.
Kim
,
D. H.
Yang
, and
D. J.
Alm
, “
Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers
,”
Langmuir
24
,
2900
(
2008
).
3.
T.
Lim
,
S.
Han
,
J.
Chung
,
J. T.
Chung
,
S.
Ko
, and
C. P.
Grigoropoulos
, “
Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate
,”
Int. J. Heat Mass Transfer
52
,
431
(
2009
).
4.
P. C.
Tsai
,
M. H. W.
Hendrix
,
R. R. M.
Dijkstra
,
L. L.
Shui
, and
D.
Lohse
, “
Microscopic structure influencing macroscopic splash at high Weber number
,”
Soft Matter
7
,
11325
(
2011
).
5.
T.
Tran
,
H. J. J.
Staat
,
A.
Susarrey-Arce
,
T. C.
Foertsch
,
A.
van Houselt
,
H. J. G. E.
Gardeniers
,
A.
Prosperetti
,
D.
Lohse
, and
C.
Sun
, “
Droplet impact on superheated micro-structured surfaces
,”
Soft Matter
9
,
3272
(
2013
).
6.
L.
Xu
, “
Liquid drop splashing on smooth, rough, and textured surfaces
,”
Phys. Rev. E
75
,
056316
(
2007
).
7.
J. H.
Kim
, “
Spray cooling heat transfer: The state of the art
,”
Int. J. Heat Fluid Flow
28
,
753
(
2007
).
8.
R. H.
Chen
,
L. C.
Chow
, and
J. E.
Navedo
, “
Effects of spray characteristics on critical heat flux in subcooled water spray cooling
,”
Int. J. Heat Mass Transfer
45
,
4033
(
2002
).
9.
J.
Leidenfrost
, “
On the fixation of water in diverse fire
,”
Int. J. Heat Mass Trans.
9
,
1153
(
1966
).
10.
S.
Adera
,
R.
Raj
,
R.
Enright
, and
E. N.
Wang
, “
Non-wetting droplets on hot superhydrophilic surfaces
,”
Nat. Commun.
4
,
2518
(
2013
).
11.
H. M.
Kwon
,
J. C.
Bird
, and
K. K.
Varanasi
, “
Increasing Leidenfrost point using micro-nano hierarchical surface structures
,”
Appl. Phys. Lett.
103
,
201601
(
2013
).
12.
J.
Li
,
Y. M.
Hou
,
Y. H.
Liu
,
C. L.
Hao
,
M. F.
Li
,
M. K.
Chaudhury
,
S. H.
Yao
, and
Z. K.
Wang
, “
Directional transport of high-temperature Janus droplets mediated by structural topography
,”
Nat. Phys.
12
,
606
(
2016
).
13.
A. L.
Biance
,
C.
Clanet
, and
D.
Quere
, “
Leidenfrost drops
,”
Phys. Fluids
15
,
1632
(
2003
).
14.
H. M.
Kwon
,
A. T.
Paxson
,
K. K.
Varanasi
, and
N. A.
Patankar
, “
Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces
,”
Phys. Rev. Lett.
106
,
036102
(
2011
).
15.
O.
Engel
, “
Waterdrop collisions with solid surfaces
,”
J. Res. Natl. Bur. Stand.
54
,
281
(
1955
).
16.
M.
Shirota
,
M. A. J.
van Limbeek
,
C.
Sun
,
A.
Prosperetti
, and
D.
Lohse
, “
Dynamic Leidenfrost effect: Relevant time and length scales
,”
Phys. Rev. Lett.
116
,
064501
(
2016
).
17.
T.
Tran
,
H. J. J.
Staat
,
A.
Prosperetti
,
C.
Sun
, and
D.
Lohse
, “
Drop impact on superheated surfaces
,”
Phys. Rev. Lett.
108
,
036101
(
2012
).
18.
W.
Bouwhuis
,
R. C. A.
van der Veen
,
T.
Tran
,
D. L.
Keij
,
K. G.
Winkels
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
J. H.
Snoeijer
, and
D.
Lohse
, “
Maximal air bubble entrainment at liquid-drop impact
,”
Phys. Rev. Lett.
109
,
264501
(
2012
).
19.
R. C. A.
van der Veen
,
T.
Tran
,
D.
Lohse
, and
C.
Sun
, “
Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry
,”
Phys. Rev. E
85
,
026315
(
2012
).
20.
H.
Darcy
,
Les Fontaines Publiques de la Ville de Dijon
(
Dalmont
,
1856
).
21.
D.
Quere
, “
Leidenfrost dynamics
,”
Annu. Rev. Fluid Mech.
45
,
197
(
2013
).
22.
L.
Xu
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
23.
B.
Sobac
,
A.
Rednikov
,
S.
Dorbolo
, and
P.
Colinet
, “
Leidenfrost effect: Accurate drop shape modeling and refined scaling laws
,”
Phys. Rev. E
90
,
053011
(
2014
).
24.
C.
Clanet
,
C.
Beguin
,
D.
Richard
, and
D.
Quere
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
(
2004
).

Supplementary Material

You do not currently have access to this content.