A new adaptive-passive control device is introduced to optimally reduce the drag on a sphere over a wide range of Reynolds numbers, Re = 0.4 × 105–4.4 × 105. The device, called an adaptive moving ring (AMR), is designed to change its size (i.e., protrusion height) adaptively depending on the wind speed (i.e., the Reynolds number) without energy input. An empirical model is formulated to accurately predict the drag coefficient as a function of the size of AMR and the Reynolds number. Based on the model, we estimate how the optimal size of AMR should vary with the Reynolds number to maximize the drag reduction. Following the estimation of the optimal size, the optimally tuned AMR reduces its protrusion height with increasing Reynolds number, and the drag decreases monotonically by up to 74% compared to that of a smooth sphere. The drag reduction by AMR is attributed to different mechanisms depending on the Reynolds number. For low Reynolds numbers, the locally separated flow at large AMR is energized by the disturbance induced by AMR and reattaches to the sphere surface, forming a large recirculation region. Then, the main separation is delayed downstream due to the increased near-wall momentum. On the other hand, at high Reynolds numbers, no recirculation zone is formed at AMR due to its low protrusion height, but a secondary separation bubble is generated on the rear sphere surface. Therefore, the boundary-layer flow becomes turbulent, and the main separation is significantly delayed, resulting in more drag reduction than for low Reynolds numbers.

1.
P. W.
Bearman
and
J. K.
Harvey
, “
Golf ball aerodynamics
,”
Aeronaut. Q.
27
,
112
122
(
1976
).
2.
R. D.
Mehta
, “
Aerodynamics of sports balls
,”
Annu. Rev. Fluid. Mech.
17
,
151
189
(
1985
).
3.
J.
Choi
,
W.-P.
Jeon
, and
H.
Choi
, “
Mechanism of drag reduction by dimples on a sphere
,”
Phys. Fluids
18
,
041702
(
2006
).
4.
E.
Achenbach
, “
The effects of surface roughness and tunnel blockage on the flow past spheres
,”
J. Fluid Mech.
65
,
113
125
(
1974
).
5.
T.
Maxworthy
, “
Experiments on the flow around a sphere at high Reynolds numbers
,”
J. Appl. Mech.
36
,
598
607
(
1969
).
6.
K.
Son
,
J.
Choi
,
W.-P.
Jeon
, and
H.
Choi
, “
Mechanism of drag reduction by a surface trip wire on a sphere
,”
J. Fluid Mech.
672
,
411
427
(
2011
).
7.
H.
Choi
,
W.-P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid. Mech.
40
,
113
139
(
2008
).
8.
W. S.
Saric
,
H. L.
Reed
, and
E. J.
Kerschen
, “
Boundary-layer receptivity to freestream disturbances
,”
Annu. Rev. Fluid. Mech.
34
,
291
319
(
2002
).
9.
K.
Aoki
,
A.
Ohike
,
K.
Yamaguchi
, and
Y.
Nakayama
, “
Flying characteristics and flow pattern of a sphere with dimples
,”
J. Visualization
6
,
67
76
(
2003
).
10.
A. J.
Smits
and
S.
Ogg
, “
Aerodynamics of the golf ball
,” in
Biomedical Engineering Principles in Sports
(
Springer
,
Boston
,
2004
), pp.
3
27
.
11.
E.
Achenbach
, “
Experiments on the flow past spheres at very high Reynolds numbers
,”
J. Fluid Mech.
54
,
565
575
(
1972
).
12.
D.
Terwagne
,
M.
Brojan
, and
P. M.
Reis
, “
Smart morphable surfaces for aerodynamic drag control
,”
Adv. Mater.
26
,
6608
6611
(
2014
).
13.
M.
Guttag
and
P. M.
Reis
, “
Active aerodynamic drag reduction on morphable cylinders
,”
Phys. Rev. Fluids
2
,
123903
(
2017
).
14.
J.
Kim
and
S.
Chae
, Korea patent 10-1907582 (
5 October 2018
).
15.
D. F.
James
and
Q. S.
Truong
, “
Wind load on cylinder with spanwise protrusion
,”
Proc. ASCE, J. Eng. Mech. Div.
98
,
1573
1589
(
1972
).
16.
M. M.
Zdravkovich
,
Flow Around Circular Cylinders
(
Oxford University Press
,
New York
,
1997
), pp.
769
771
.
17.
A. K.
Norman
and
B. J.
McKeon
, “
The effect of a small isolated roughness element on the forces on a sphere in uniform flow
,”
Exp. Fluids
51
,
1031
1045
(
2011
).
18.
E.
Achenbach
, “
Vortex shedding from spheres
,”
J. Fluid Mech.
62
,
209
221
(
1974
).
19.
H. J.
Kim
and
P. A.
Durbin
, “
Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation
,”
Phys. Fluids
31
,
3260
(
1988
).
20.
H.
Sakamoto
and
H.
Haniu
, “
A study on vortex shedding from spheres in a uniform flow
,”
J. Fluids Eng.
112
,
386
392
(
1990
).
21.
A. K.
Norman
and
B. J.
McKeon
, “
Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers
,”
Exp. Fluids
51
,
1439
1453
(
2011
).
22.
K.
Son
,
J.
Choi
,
W.-P.
Jeon
, and
H.
Choi
, “
Effect of free-stream turbulence on the flow over a sphere
,”
Phys. Fluids
22
,
045101
(
2010
).
23.
J.
Kim
and
H.
Choi
, “
Aerodynamics of a golf ball with grooves
,”
Proc. - Inst. Mech. Eng. Part P, J. Sports Eng. Technol.
228
,
233
241
(
2014
).
24.
J.
Kim
,
H.
Choi
,
H.
Park
, and
J. Y.
Yoo
, “
Inverse Magnus effect on a rotating sphere: When and why
,”
J. Fluid Mech.
754
,
R2
(
2014
).
25.
D.
Choi
and
H.
Park
, “
Flow around in-line sphere array at moderate Reynolds number
,”
Phys. Fluids
30
,
097104
(
2018
).
26.
H.
Kim
,
J.
Kim
, and
H.
Choi
, “
Flow structure modifications by leading-edge tubercles on a 3D wing
,”
Bioinspiration Biomimetics
13
,
066011
(
2018
).
27.
J. B.
Barlow
,
W. H.
Rae
, and
A.
Pope
,
Low-Speed Wind Tunnel Testing
(
Wiley
,
New York
,
1999
), pp.
196
197
.
28.
M.
Kuss
,
F.
Jäkel
, and
F. A.
Wichmann
, “
Bayesian inference for psychometric functions
,”
J. Vision
5
,
478
492
(
2005
).
29.
D. P.
Hart
, “
Super-resolution PIV by recursive local-correlation
,”
J. Visualization
3
,
187
194
(
2000
).
30.
F. M.
White
,
Fluid Mechanics
(
McGraw-Hill
,
Boston
,
1999
), p.
448
.
31.
S.
Taneda
, “
Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106
,”
J. Fluid Mech.
85
,
187
192
(
1978
).
32.
G. K.
Suryanarayana
and
G. E. A.
Meier
, “
Effect of ventilation on the flowfield around a sphere
,”
Exp. Fluids
19
,
78
88
(
1995
).
33.
S.
Jeon
,
J.
Choi
,
W.-P.
Jeon
,
H.
Choi
, and
J.
Park
, “
Active control of flow over a sphere for drag reduction at a subcritical Reynolds number
,”
J. Fluid Mech.
517
,
113
129
(
2004
).
34.
R.
Deshpande
,
V.
Kanti
,
A.
Desai
, and
S.
Mittal
, “
Intermittency of laminar separation bubble on a sphere during drag crisis
,”
J. Fluid Mech.
812
,
815
840
(
2017
).
35.
M.
Lang
,
U.
Rist
, and
S.
Wagner
, “
Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV
,”
Exp. Fluids
36
,
43
52
(
2004
).
36.
S.
Burgmann
,
C.
Brücker
, and
W.
Schröder
, “
Scanning PIV measurements of a laminar separation bubble
,”
Exp. Fluids
41
,
319
326
(
2006
).
37.
S.
Burgmann
,
J.
Dannemann
, and
W.
Schröder
, “
Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil
,”
Exp. Fluids
44
,
609
622
(
2008
).
38.
T.
Michelis
,
S.
Yarusevych
, and
M.
Kotsonis
, “
Response of a laminar separation bubble to impulsive forcing
,”
J. Fluid Mech.
820
,
633
666
(
2017
).
39.
J.
Choi
, Ph.D. thesis,
Seoul National University
,
2006
.
40.
R. F.
Huang
,
C. M.
Hsu
, and
Y. T.
Chen
, “
Modulating flow and aerodynamic characteristics of a square cylinder in crossflow using a rear jet injection
,”
Phys. Fluids
29
,
015103
(
2017
).
41.
Y.
Cao
and
T.
Tamura
, “
Supercritical flows past a square cylinder with rounded corners
,”
Phys. Fluids
29
,
085110
(
2017
).
42.
A.
Sanyal
and
A.
Dhiman
, “
Wake interactions in a fluid flow past a pair of side-by-side square cylinders in presence of mixed convection
,”
Phys. Fluids
29
,
103602
(
2017
).
43.
H.
Bai
and
M. M.
Alam
, “
Dependence of square cylinder wake on Reynolds number
,”
Phys. Fluids
30
,
015102
(
2018
).
44.
C.
Yue
,
S.
Guo
, and
L.
Shi
, “
Hydrodynamic analysis of the spherical underwater robot SUR-II
,”
Int. J. Adv. Rob. Syst.
10
,
247
(
2013
).
45.
M.
Purcell
,
C.
von Alt
,
B.
Allen
,
T.
Austin
,
N.
Forrester
,
R.
Goldsborough
, and
R.
Stokey
, in
Proceedings of the OCEANS 2000 MTS/IEEE Conference 11–14 September 2000
(
IEEE
,
Providence, RI, USA
,
2000
), pp.
147
151
.
46.
B.
Hobson
,
B.
Schulz
,
J.
Janet
,
M.
Kemp
,
R.
Moody
,
C.
Pell
, and
H.
Pinnix
, in
Proceedings of the OCEANS 2001 MTS/IEEE Conference 5–8 November 2001
(
IEEE
,
Honolulu, HI, USA
,
2001
), pp.
2043
2045
.
47.
S. A.
Cambone
,
K. J.
Krieg
,
P.
Pace
, and
L.
Wells
,
Unmanned Aircraft Systems (UAS) Roadmap 2005-2030
(
Office of the Secretary of Defense
,
Washington, DC
,
2005
), pp.
26
29
.
You do not currently have access to this content.