Spatial and spectral energy exchanges associated with the turbulence kinetic energy per unit mass, or the half-trace of the velocity covariance tensor, are studied in an anisothermal low Mach number turbulent channel flow. The temperatures of the two channel walls are 293 K and 586 K. This generates a strong temperature gradient in the wall-normal direction. The effect of the temperature gradient on the energy exchanges is investigated using two direct numerical simulations of the channel, at the mean friction Reynolds numbers 180 and 395. The temperature gradient creates an asymmetry between the energy exchanges at the hot and cold sides due to the variations of the local fluid properties and low Reynolds number effects. The low Reynolds number effects are smaller at higher Reynolds numbers, reducing the asymmetry between the hot and cold sides. We also decomposed the energy exchanges in order to study separately the mean-property terms, as found in the constant-property isothermal case, and the thermal terms, specific to flows with variable fluid properties. The significant thermal terms have a similar effect on the flow. Besides, low Reynolds number effects have a negligible impact on thermal terms and only affect mean-property terms.

1.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, “
Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence
,”
J. Fluids Eng.
123
,
382
393
(
2001
).
2.
Andrade
,
J. R.
,
Martins
,
R. S.
,
Mompean
,
G.
,
Thais
,
L.
, and
Gatski
,
T. B.
, “
Analyzing the spectral energy cascade in turbulent channel flow
,”
Phys. Fluids
30
,
065110
(
2018
).
3.
Aulery
,
F.
,
Dupuy
,
D.
,
Toutant
,
A.
,
Bataille
,
F.
, and
Zhou
,
Y.
, “
Spectral analysis of turbulence in anisothermal channel flows
,”
Comput. Fluids
151
,
115
131
(
2017
).
4.
Aulery
,
F.
,
Toutant
,
A.
,
Bataille
,
F.
, and
Zhou
,
Y.
, “
Energy transfer process of anisothermal wall-bounded flows
,”
Phys. Lett. A
379
,
1520
1526
(
2015
).
5.
Aupoix
,
B.
, “
Introduction to turbulence modelling for compressible flows
,” in
VKI Lecture Series
(
Von Karman Institute for Fluid Dynamics
,
2000
), Vol. 4, pp.
H1
H64
.
6.
Blackman
,
K.
,
Perret
,
L.
,
Calmet
,
I.
, and
Rivet
,
C.
, “
Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using PIV
,”
Phys. Fluids
29
,
085113
(
2017
).
7.
Bolotnov
,
I. A.
,
Lahey
,
R. T.
,
Drew
,
D. A.
,
Jansen
,
K. E.
, and
Oberai
,
A. A.
, “
Spectral analysis of turbulence based on the DNS of a channel flow
,”
Comput. Fluids
39
,
640
655
(
2010
).
8.
Bradshaw
,
P.
, “
Compressible turbulent shear layers
,”
Annu. Rev. Fluid Mech.
9
,
33
52
(
1977
).
9.
Calvin
,
C.
,
Cueto
,
O.
, and
Emonot
,
P.
, “
An object-oriented approach to the design of fluid mechanics software
,”
ESAIM: Math. Modell. Numer. Anal.
36
,
907
921
(
2002
).
10.
Campolo
,
M.
,
Andreoli
,
M.
, and
Soldati
,
A.
, “
Computing flow, combustion, heat transfer and thrust in a micro-rocket via hierarchical problem decomposition
,”
Microfluid. Nanofluid.
7
,
57
73
(
2009
).
11.
Chassaing
,
P.
,
Antonia
,
R. A.
,
Anselmet
,
F.
,
Joly
,
L.
, and
Sarkar
,
S.
,
Variable Density Fluid Turbulence
(
Springer Science & Business Media
,
2013
).
12.
Cook
,
A. W.
and
Zhou
,
Y.
, “
Energy transfer in Rayleigh-Taylor instability
,”
Phys. Rev. E
66
,
026312
(
2002
).
13.
Cousteix
,
J.
and
Aupoix
,
B.
, “
Turbulence models for compressible flows
,” in
Special Course Three-Dimensional Supersonic and Hypersonic Flows Including Separation
(
AGARD/FDP-VKI Special Course
,
1989
).
14.
Daguenet-Frick
,
X.
,
Foucaut
,
J.-M.
,
Coudert
,
S.
,
Toutant
,
A.
, and
Olalde
,
G.
, “
Experimental analysis of the turbulent flow behavior of a textured surface proposed for asymmetric heat exchangers
,”
Flow, Turbul. Combust.
89
,
149
169
(
2012
).
15.
Daguenet-Frick
,
X.
,
Toutant
,
A.
,
Bataille
,
F.
, and
Olalde
,
G.
, “
Numerical investigation of a ceramic high-temperature pressurized-air solar receiver
,”
Sol. Energy
90
,
164
178
(
2013
).
16.
Del Álamo
,
J. C.
and
Jiménez
,
J.
, “
Spectra of the very large anisotropic scales in turbulent channels
,”
Phys. Fluids
15
,
L41
L44
(
2003
).
17.
Del Álamo
,
J. C.
,
Jiménez
,
J.
,
Zandonade
,
P.
, and
Moser
,
R. D.
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
144
(
2004
).
18.
Domaradzki
,
J. A.
,
Liu
,
W.
,
Hartel
,
C.
, and
Kleiser
,
L.
, “
Energy transfer in numerically simulated wall-bounded turbulent flows
,”
Phys. Fluids
6
,
1583
1599
(
1994
).
19.
Dupuy
,
D.
,
Toutant
,
A.
, and
Bataille
,
F.
, “
Equations of energy exchanges in variable density turbulent flows
,”
Phys. Lett. A
382
,
327
333
(
2018a
).
20.
Dupuy
,
D.
,
Toutant
,
A.
, and
Bataille
,
F.
, “
Turbulence kinetic energy exchanges in flows with highly variable fluid properties
,”
J. Fluid Mech.
834
,
5
54
(
2018b
).
21.
Flores
,
O.
and
Jiménez
,
J.
, “
Hierarchy of minimal flow units in the logarithmic layer
,”
Phys. Fluids
22
,
071704
(
2010
).
22.
Gamard
,
S.
and
George
,
W. K.
, “
Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence
,”
Flow, Turbul. Combust.
63
,
443
477
(
2000
).
23.
Gatski
,
T. B.
and
Bonnet
,
J. P.
,
Compressibility, Turbulence and High Speed Flow
(
Academic Press
,
2013
).
24.
Hoyas
,
S.
and
Jiménez
,
J.
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
25.
Hoyas
,
S.
and
Jiménez
,
J.
, “
Reynolds number effects on the Reynolds-stress budgets in turbulent channels
,”
Phys. Fluids
20
,
101511
(
2008
).
26.
Huang
,
P. G.
,
Coleman
,
G. N.
, and
Bradshaw
,
P.
, “
Compressible turbulent channel flows: DNS results and modelling
,”
J. Fluid Mech.
305
,
185
218
(
1995
).
27.
Hutchins
,
N.
and
Marusic
,
I.
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc., A
365
,
647
664
(
2007
).
28.
Jiménez
,
J.
, “
The physics of wall turbulence
,”
Physica A
263
,
252
262
(
1999
).
29.
Jiménez
,
J.
, “
Near-wall turbulence
,”
Phys. Fluids
25
,
101302
(
2013
).
30.
Jiménez
,
J.
and
Moser
,
R. D.
, “
What are we learning from simulating wall turbulence?
,”
Philos. Trans. R. Soc., A
365
,
715
732
(
2007
).
31.
Jiménez
,
J.
and
Pinelli
,
A.
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
32.
Kida
,
S.
and
Orszag
,
S. A.
, “
Energy and spectral dynamics in decaying compressible turbulence
,”
J. Sci. Comput.
7
,
1
34
(
1992
).
33.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
34.
Laadhari
,
F.
, “
On the evolution of maximum turbulent kinetic energy production in a channel flow
,”
Phys. Fluids
14
,
L65
L68
(
2002
).
35.
Lee
,
J.
,
Gharagozloo
,
P. E.
,
Kolade
,
B.
,
Eaton
,
J. K.
, and
Goodson
,
K. E.
, “
Nanofluid convection in microtubes
,”
J. Heat Transfer
132
,
092401
(
2010
).
36.
Lee
,
J.
,
Jung
,
S. Y.
,
Sung
,
H. J.
, and
Zaki
,
T. A.
, “
Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity
,”
J. Fluid Mech.
726
,
196
225
(
2013
).
37.
Lee
,
M.
and
Moser
,
R. D.
, “
Spectral analysis on Reynolds stress transport equation in high firewall-bounded turbulence
,” in
International Symposium on Turbulence and Shear Flow Phenomena (TSFP-9), Melbourne
(
Begell House
,
2015a
), p.
4A–3
.
38.
Lee
,
M.
and
Moser
,
R. D.
, “
Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200
,”
J. Fluid Mech.
774
,
395
415
(
2015b
).
39.
Lele
,
S. K.
, “
Compressibility effects on turbulence
,”
Annu. Rev. Fluid Mech.
26
,
211
254
(
1994
).
40.
Lesieur
,
M.
,
Turbulence in Fluids
, Fluid Mechanics and Its Applications (
Springer
,
2008
).
41.
Mathis
,
R.
,
Hutchins
,
N.
, and
Marusic
,
I.
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
337
(
2009
).
42.
Meister
,
A.
, “
Asymptotic single and multiple scale expansions in the low Mach number limit
,”
SIAM J. Appl. Math.
60
,
256
271
(
1999
).
43.
Mizuno
,
Y.
, “
Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers
,”
J. Fluid Mech.
805
,
171
187
(
2016
).
44.
Mollicone
,
J.-P.
,
Battista
,
F.
,
Gualtieri
,
P.
, and
Casciola
,
C. M.
, “
Turbulence dynamics in separated flows: The generalised Kolmogorov equation for inhomogeneous anisotropic conditions
,”
J. Fluid Mech.
841
,
1012
1039
(
2018
).
45.
Morinishi
,
Y.
,
Lundhomas
,
T. S.
,
Vasilyev
,
O. V.
, and
Moin
,
P.
, “
Fully conservative higher order finite difference schemes for incompressible flow
,”
J. Comput. Phys.
143
,
90
124
(
1998
).
46.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
47.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
, “
Mean statistics of a heated turbulent pipe flow at supercritical pressure
,”
Int. J. Heat Mass Transfer
83
,
741
752
(
2015
).
48.
Nicoud
,
F.
, “
Conservative high-order finite-difference schemes for low-Mach number flows
,”
J. Comput. Phys.
158
,
71
97
(
2000
).
49.
Paolucci
,
S.
, “
On the filtering of sound from the Navier–Stokes equations
,” Technical Report SAND82-8257,
Sandia National Laboratories
,
Livermore, CA, USA
,
1982
.
50.
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
, “
Scalar statistics in variable property turbulent channel flows
,”
Phys. Rev. Fluids
2
,
084604
(
2017
).
51.
Pecnik
,
R.
and
Patel
,
A.
, “
Scaling and modelling of turbulence in variable property channel flows
,”
J. Fluid Mech.
823
,
R1
(
2017
).
52.
Peeters
,
J. W. R.
,
Pecnik
,
R.
,
Rohde
,
M.
,
Van Der Hagen
,
T. H. J. J.
, and
Boersma
,
B. J.
, “
Turbulence attenuation in simultaneously heated and cooled annular flows at supercritical pressure
,”
J. Fluid Mech.
799
,
505
540
(
2016
).
53.
Sanchez
,
M.
,
Aulery
,
F.
,
Toutant
,
A.
, and
Bataille
,
F.
, “
Large eddy simulation of thermal boundary layer spatial development in a turbulent channel flow
,”
J. Fluids Eng.
136
,
060906
(
2014
).
54.
Schiavo
,
L. A. C. A.
,
Wolf
,
W. R.
, and
Azevedo
,
J. L. F.
, “
Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation
,”
Phys. Fluids
29
,
115108
(
2017
).
55.
Serra
,
S.
,
Toutant
,
A.
, and
Bataille
,
F.
, “
Thermal large eddy simulation in a very simplified geometry of a solar receiver
,”
Heat Transfer Eng.
33
,
505
524
(
2012a
).
56.
Serra
,
S.
,
Toutant
,
A.
,
Bataille
,
F.
, and
Zhou
,
Y.
, “
High-temperature gradient effect on a turbulent channel flow using thermal large-eddy simulation in physical and spectral spaces
,”
J. Turbul.
13
,
N49
(
2012b
).
57.
Serra
,
S.
,
Toutant
,
A.
,
Bataille
,
F.
, and
Zhou
,
Y.
, “
Turbulent kinetic energy spectrum in very anisothermal flows
,”
Phys. Lett. A
376
,
3177
3184
(
2012c
).
58.
Sharma
,
M. K.
,
Kumar
,
A.
,
Verma
,
M. K.
, and
Chakraborty
,
S.
, “
Statistical features of rapidly rotating decaying turbulence: Enstrophy and energy spectra and coherent structures
,”
Phys. Fluids
30
,
045103
(
2018a
).
59.
Sharma
,
M. K.
,
Verma
,
M. K.
, and
Chakraborty
,
S.
, “
On the energy spectrum of rapidly rotating forced turbulence
,”
Phys. Fluids
30
,
115102
(
2018b
).
60.
Smits
,
A. J.
,
McKeon
,
B. J.
, and
Marusic
,
I.
, “
High–Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
(
2011
).
61.
Sutherland
,
W.
, “
The viscosity of gases and molecular force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
36
,
507
531
(
1893
).
62.
Toutant
,
A.
and
Bataille
,
F.
, “
Turbulence statistics in a fully developed channel flow submitted to a high temperature gradient
,”
Int. J. Therm. Sci.
74
,
104
118
(
2013
).
63.
Towery
,
C. A. Z.
,
Poludnenko
,
A. Y.
,
Urzay
,
J.
,
O’Brien
,
J.
,
Ihme
,
M.
, and
Hamlington
,
P. E.
, “
Spectral kinetic energy transfer in turbulent premixed reacting flows
,”
Phys. Rev. E
93
,
053115
(
2016
).
64.
Vreman
,
A. W.
and
Kuerten
,
J. G. M.
, “
Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180
,”
Phys. Fluids
26
,
015102
(
2014
).
65.
Williamson
,
J. H.
, “
Low-storage Runge-Kutta schemes
,”
J. Comput. Phys.
35
,
48
56
(
1980
).
66.
Yang
,
Y.
,
Matthaeus
,
W. H.
,
Parashar
,
T. N.
,
Haggerty
,
C. C.
,
Roytershteyn
,
V.
,
Daughton
,
W.
,
Wan
,
M.
,
Shi
,
Y.
, and
Chen
,
S.
, “
Energy transfer, pressure tensor, and heating of kinetic plasma
,”
Phys. Plasmas
24
,
072306
(
2017a
).
67.
Yang
,
Y.
,
Matthaeus
,
W. H.
,
Parashar
,
T. N.
,
Wu
,
P.
,
Wan
,
M.
,
Shi
,
Y.
,
Chen
,
S.
,
Roytershteyn
,
V.
, and
Daughton
,
W.
, “
Energy transfer channels and turbulence cascade in Vlasov-Maxwell turbulence
,”
Phys. Rev. E
95
,
061201
(
2017b
).
68.
Yoo
,
J. Y.
, “
The turbulent flows of supercritical fluids with heat transfer
,”
Annu. Rev. Fluid Mech.
45
,
495
525
(
2013
).
69.
Zhou
,
Y.
, “
A phenomenological treatment of rotating turbulence
,”
Phys. Fluids
7
,
2092
2094
(
1995
).
70.
Zhou
,
Y.
, “
Renormalization group theory for fluid and plasma turbulence
,”
Phys. Rep.
488
,
1
49
(
2010
).
71.
Zhou
,
Y.
,
Matthaeus
,
W. H.
, and
Dmitruk
,
P.
, “
Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas
,”
Rev. Mod. Phys.
76
,
1015
(
2004
).
72.
Zhou
,
Y.
and
Oughton
,
S.
, “
Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence
,”
Phys. Plasmas
18
,
072304
(
2011
).
73.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
, “
Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow
,”
Acta Mech.
195
,
305
326
(
2008
).
74.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
, “
Modulation of turbulence in forced convection by temperature-dependent viscosity
,”
J. Fluid Mech.
697
,
150
174
(
2012
).
You do not currently have access to this content.