An implicit large-eddy simulation is carried out to study turbulent boundary-layer separation from a backward-facing rounded ramp with active wall actuation control. This method, called spanwise alternating distributed strips control, is imposed onto the flat plate surface upstream of a rounded ramp by alternatively applying out-of-phase control and in-phase control to the wall-normal velocity component in the spanwise direction. As a result, the local turbulence intensity is alternatively suppressed and enhanced, leading to the creation of vertical shear-layers, which is responsible for the presence of large-scale streamwise vortices. These vortices exert a predominant influence on the suppression of the flow separation. The interaction between the large-scale vortices and the downstream recirculation zone and free shear-layer is studied by examining flow statistics. It is found that in comparison with the non-controlled case, the flow separation is delayed, the reattachment point is shifted upstream, and the length of the mean recirculation zone is reduced up to 8.49%. The optimal control case is achieved with narrow in-phase control strips. An in-depth analysis shows that the delay of the flow separation is attributed to the activation of the near-wall turbulence by the in-phase control strips and the improvement of the reattachment location is mainly due to the large-scale streamwise vortices, which enhance the momentum transport between the main flow and separated region.

1.
M.
Gad-el-Hak
,
Flow Control: Passive, Active, and Reactive Flow Management
(
Cambridge University Press
,
London
,
2000
), p.
2
.
2.
L.
Prandtl
, “
Über flussigkeitsbewegung bei sehr kleiner reibung
,” in
Proceedings of the Third International Congress on Mathematical Education
(
B. G. Teubner
,
Heidelberg, Germany
,
1904
), p.
484
.
3.
M.
Gad-el-Hak
and
D. M.
Bushnell
, “
Separation control: Review
,”
J. Fluids Eng.
113
,
5
(
1991
).
4.
M. A.
Leschziner
,
H.
Choi
, and
K. S.
Choi
, “
Flow-control approaches to drag reduction in aerodynamics: Progress and prospects
,”
Philos. Trans. R. Soc., A
369
,
1349
(
2011
).
5.
H. D.
Taylor
, “
The elimination of diffuser separation by vortex generators
,” United Aircraft Corporation Report No. R-4012-3,
1947
.
6.
J. C.
Lin
, “
Review of research on low-profile vortex generators to control boundary-layer separation
,”
Prog. Aerosp. Sci.
38
,
389
(
2002
).
7.
K.
Koeltzsch
,
A.
Dinkelacker
, and
R.
Grundmann
, “
Flow over convergent and divergent wall riblets
,”
Exp. Fluids
33
,
346
(
2002
).
8.
B.
Nugroho
,
N.
Hutchins
, and
J. P.
Monty
, “
Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness
,”
Int. J. Heat Fluid Flow
41
,
90
(
2013
).
9.
R.
Mejia-Alvarez
,
J. M.
Barros
, and
K. T.
Christensen
, “
Structural attributes of turbulent flow over a complex topography
,” in
Coherent Flow Structures at Earth’s Surface
(
John Wiley & Sons, Ltd.
,
2013
), p.
25
.
10.
R.
Mejia-Alvarez
and
K. T.
Christensen
, “
Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness
,”
Phys. Fluids
25
,
115109
(
2013
).
11.
S. J.
Kline
,
W. C.
Reynolds
,
F. A.
Schraub
, and
P. W.
Rundstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
(
1967
).
12.
S. K.
Robinson
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
,
601
(
1991
).
13.
W.
Schoppa
and
F.
Hussain
, “
Coherent structure generation in near-wall turbulence
,”
J. Fluid Mech.
453
,
57
(
2002
).
14.
B.
Ganapathisubramani
,
E. K.
Longmire
, and
I.
Marusic
, “
Characteristics of vortex packets in turbulent boundary layers
,”
J. Fluid Mech.
478
,
35
(
2003
).
15.
C. D.
Tomkins
and
R. J.
Adrian
, “
Spanwise structure and scale growth in turbulent boundary layers
,”
J. Fluid Mech.
490
,
37
(
2003
).
16.
J. M.
Barros
and
K. T.
Christensen
, “
Observations of turbulent secondary flows in a rough-wall boundary layer
,”
J. Fluid Mech.
748
,
R1
(
2014
).
17.
D.
Willingham
,
W.
Anderson
,
K. T.
Christensen
, and
J. M.
Barros
, “
Turbulent boundary layer flow over transverse aerodynamic roughness transitions: Induced mixing and flow characterization
,”
Phys. Fluids
26
,
025111
(
2014
).
18.
H. L.
Bai
,
Kevin
,
N.
Hutchins
, and
J. P.
Monty
, “
Turbulence modifications in a turbulent boundary layer over a rough wall with spanwise-alternating roughness strips
,”
Phys. Fluids
30
,
055105
(
2018
).
19.
K.
Kevin
,
J. P.
Monty
,
H. L.
Bai
,
G.
Pathikonda
,
B.
Nugroho
,
J. M.
Barros
,
K. T.
Christensen
, and
N.
Hutchins
, “
Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern
,”
J. Fluid Mech.
813
,
412
(
2017
).
20.
J. O.
Hinze
, “
Secondary currents in wall turbulence
,”
Phys. Fluids
10
,
S122
(
1967
).
21.
J. O.
Hinze
, “
Experimental investigation on secondary currents in the turbulent flow through a straight conduit
,”
Appl. Sci. Res.
28
,
453
(
1973
).
22.
A.
Stroh
,
Y.
Hasegawa
,
J.
Kriegseis
, and
B.
Frohnapfel
, “
Secondary vortices over surfaces with spanwise varying drag
,”
J. Turbul.
17
,
1142
(
2016
).
23.
H. G.
Hwang
and
J. H.
Lee
, “
Secondary flows in turbulent boundary layers over longitudinal surface roughness
,”
Phys. Rev. Fluids
3
,
014608
(
2018
).
24.
C.
Vanderwel
and
B.
Ganapathisubramani
, “
Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers
,”
J. Fluid Mech.
774
,
R2
(
2015
).
25.
J.
Yang
and
W.
Anderson
, “
Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: Topographically-driven secondary flows affect outer-layer similarity of turbulent length scales
,”
Flow, Turbul. Combust.
100
,
1
(
2018
).
26.
D.
Chung
,
J. P.
Monty
, and
N.
Hutchins
, “
Similarity and structure of wall turbulence with lateral wall shear stress variations
,”
J. Fluid Mech.
847
,
591
(
2018
).
27.
W.
Anderson
,
J. M.
Barros
,
K. T.
Christensen
, and
A.
Awashi
, “
Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness
,”
J. Fluid Mech.
768
,
316
(
2015
).
28.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
London
,
1956
), p.
259
.
29.
F.
Xu
,
S.
Zhong
, and
S.
Zhang
, “
Vortical structures and development of laminar flow over convergent-divergent riblets
,”
Phys. Fluids
30
,
051901
(
2018
).
30.
R.
Mejiaalvarez
and
K. T.
Christensen
, “
Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer
,”
Phys. Fluids
22
,
015106
(
2010
).
31.
T.
Medjnoun
,
C.
Vanderwel
, and
B.
Ganapathisubramani
, “
Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities
,”
J. Fluid Mech.
838
,
516
(
2018
).
32.
D. A.
Vermaas
,
W. S. J.
Uijttewaal
, and
A. J. F.
Hoitink
, “
Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel
,”
Water Resour. Res.
47
,
2144
, (
2011
).
33.
W.
Ni
,
L.
Lu
,
J.
Fang
,
C.
Moulinec
, and
Y.
Yao
, “
Large-scale streamwise vortices in turbulent channel flow induced by active wall actuations
,”
Flow, Turbul. Combust.
100
,
651
(
2018
).
34.
W.
Ni
,
L.
Lu
,
J.
Fang
,
C.
Moulinec
, and
Y.
Yao
, “
Direct numerical simulation of turbulent channel flow with spanwise alternatively distributed strips control
,”
Mod. Phys. Lett. B
32
,
1840004
(
2018
).
35.
S.
Lardeau
and
M. A.
Leschziner
, “
The interaction of round synthetic jets with a turbulent boundary layer separating from a rounded ramp
,”
J. Fluid Mech.
683
,
172
(
2011
).
36.
Y.
Bentaleb
,
S.
Lardeau
, and
M. A.
Leschziner
, “
Large-eddy simulation of turbulent boundary layer separation from a rounded step
,”
J. Turbul.
13
,
N4
(
2012
).
37.
N.
Hutchins
and
I.
Marusic
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc., A
365
,
647
(
2007
).
38.
J.
Fang
,
Y.
Yao
,
Z.
Li
, and
L.
Lu
, “
Investigation of low-dissipation monotonicity-preserving scheme for direct numerical simulation of compressible turbulent flows
,”
Comput. Fluids
104
,
55
(
2014
).
39.
J.
Fang
,
Y.
Yao
,
A. A.
Zheltovodov
,
Z.
Li
, and
L.
Lu
, “
Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner
,”
Phys. Fluids
27
,
125104
(
2015
).
40.
J.
Fang
,
Y.
Yao
,
A. A.
Zheltovodov
, and
L.
Lu
, “
Investigation of three-dimensional shock wave/turbulent boundary layer interaction initiated by a single fin
,”
AIAA J.
55
,
509
(
2016
).
41.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
42.
N. D.
Sandham
,
Q.
Li
, and
H. C.
Yee
, “
Entropy splitting for high-order numerical simulation of compressible turbulence
,”
J. Comput. Phys.
178
,
307
(
2002
).
43.
D. V.
Gaitonde
and
M. R.
Visbal
, “
Pade-type higher-order boundary filters for the Navier–Stokes equations
,” AIAA Paper 2103-2112,
2000
.
44.
L.
Fang
,
W. J.
Bos
,
L.
Shao
, and
J. P.
Bertoglio
, “
Time-reversibility of Navier-Stokes turbulence and its implication for subgrid scale models
,”
J. Turbul.
13
,
N3
(
2012
).
45.
L.
Fang
,
L.
Shao
, and
P.
Bertoglio
, “
Recent understanding on the subgrid-scale modeling of large-eddy simulation in physical space
,”
Sci. China: Phys., Mech. Astron.
57
,
2188
(
2014
).
46.
M. R.
Visbal
and
D. P.
Rizzetta
, “
Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes
,”
J. Fluids Eng.
124
,
836
(
2002
).
47.
D. P.
Rizzetta
,
M. R.
Visbal
, and
G. A.
Blaisdell
, “
A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation
,”
Int. J. Numer. Methods Fluids
42
,
665
(
2003
).
48.
M. R.
Visbal
,
P. E.
Morgan
, and
D. P.
Rizzetta
, “
An implicit LES approach based on high-order compact differencing and filtering schemes
,” AIAA Paper 2003-4098,
2003
.
49.
D. P.
Rizzetta
,
M. R.
Visbal
, and
P. E.
Morgan
, “
A high-order compact finite-difference scheme for large-eddy simulation of active flow control
,” AIAA Paper 2008-526,
2008
.
50.
S.
Gottlieb
and
C. W.
Shu
, “
Total variation diminishing Runge-Kutta schemes
,”
Math. Comput. Am. Math. Soc.
67
,
73
(
1998
).
51.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
(
1994
).
52.
E.
Touber
and
N. D.
Sandham
, “
Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble
,”
Theor. Comput. Fluid Dyn.
23
,
79
(
2009
).
53.
B.
Morgan
,
J.
Larsson
,
S.
Kawai
, and
S. K.
Lele
, “
Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation
,”
AIAA J.
49
,
582
(
2011
).
54.
J. W.
Kim
and
D. J.
Lee
, “
Generalized characteristic boundary conditions for computational aeroacoustics
,”
AIAA J.
38
,
2040
(
2000
).
55.
J. W.
Kim
and
D. J.
Lee
, “
Generalized characteristic boundary conditions for computational aeroacoustics, Part 2
,”
AIAA J.
42
,
47
(
2004
).
56.
P.
Schlatter
and
R.
Örlü
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid Mech.
659
,
116
(
2010
).
57.
J.
Jiménez
,
S.
Hoyas
,
M. P.
Simens
, and
Y.
Mizuno
, “
Turbulent boundary layers and channels at moderate Reynolds numbers
,”
J. Fluid Mech.
657
,
335
(
2010
).
58.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, streams, and convergence zones in turbulent flows
,” Center for Turbulence Research Report CTR-S88,
1988
, p.
193
.
59.
R.
Legendre
, “
Lignes de courant en écoulement permanent: Décollement et séparation (streamlines in permanent flows: Detachment and separation)
,” La Recherche Aérospatiale No. 1977–6,
1977
.
60.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
(
2002
).
61.
H.
Le
,
P.
Moin
, and
J.
Kim
, “
Direct numerical simulation of turbulent flow over a backward-facing step
,”
J. Fluid Mech.
330
,
349
(
1997
).
You do not currently have access to this content.