The interacting thermogravitational and thermomagnetic instabilities arising in a vertical layer of non-isothermal ferrofluid placed in a horizontal magnetic field are investigated by means of a weakly nonlinear analysis. An expansion in disturbance amplitude leads to the reduction of a full problem to a system of coupled cubic Landau amplitude equations. Their solutions are analyzed and interpreted from a physical point of view. The details of an intricate competition between gravitational and magnetic buoyancy mechanisms are highlighted. The spatial structure of the resulting flow patterns is discussed. It is shown that the parametric existence regions determined for finite amplitude disturbances differ drastically from those predicted based on the analysis of infinitesimal perturbations. Subsequently, the cross-layer heat flux characteristics are discussed. It is shown that the co-existence of two physical mechanisms of convection can lead to a suppression of heat transfer rather than to its enhancement.

1.
B. M.
Berkovsky
,
V. F.
Medvedev
, and
M. S.
Krakov
,
Magnetic Fluids: Engineering Application
(
Oxford University Press
,
1993
).
2.
E.
Blums
,
A. O.
Cebers
, and
M. M.
Maiorov
,
Magnetic Fluids
(
Walter de Gruyter & Co.
,
Berlin, NY
,
1997
).
3.
L.
Godson
,
B.
Raja
,
D. M.
Lal
, and
S.
Wongwises
, “
Enhancement of heat transfer using nanofluids—An overview
,”
Renewable Sustainable Energy Rev.
14
,
629
641
(
2010
).
4.
Z.
Haddad
,
H. F.
Oztop
,
E.
Abu-Nada
, and
A.
Mataoui
, “
A review on natural convective heat transfer of nanofluids
,”
Renewable Sustainable Energy Rev.
16
,
5363
5378
(
2012
).
5.
R.
Taylor
,
S.
Coulombe
,
T.
Otanicar
,
P.
Phelan
,
A.
Gunawan
,
W.
Lv
,
G.
Rosengarten
,
R.
Prasher
, and
H.
Tyagi
, “
Small particles, big impacts: A review of the diverse applications of nanofluids
,”
J. Appl. Phys.
113
,
011301
(
2013
).
6.
A. A.
Mohamad
, “
Myth about nano-fluid heat transfer enhancement
,”
Int. J. Heat Mass Transfer
86
,
397
403
(
2015
).
7.
M. T.
Krauzina
,
A. A.
Bozhko
,
P. V.
Krauzin
, and
S. A.
Suslov
, “
The use of ferrofluids for heat removal: Advantage or disadvantage?
,”
J. Magn. Magn. Mater.
431
,
241
244
(
2017
).
8.
A. A.
Bozhko
and
S. A.
Suslov
,
Convection in Ferro-Nanofluids: Experiments and Theory. Physical Mechanisms, Flow Patterns, and Heat Transfer
, Advances in Mechanics and Mathematics Vol. 40 (
Springer
,
Switzerland
,
2018
).
9.
A.
Lange
, “
Thermomagnetic convection of magnetic fluids in a cylindrical geometry
,”
Phys. Fluids
14
,
2059
2064
(
2002
).
10.
B. A.
Finlayson
, “
Convective instability of ferromagnetic fluids
,”
J. Fluid Mech.
40
,
753
767
(
1970
).
11.
P. J.
Blennerhassett
,
F.
Lin
, and
P. J.
Stiles
, “
Heat transfer through strongly magnetized ferrofluids
,”
Proc. R. Soc. London, Ser. A
433
,
165
177
(
1991
).
12.
S. A.
Suslov
, “
Thermo-magnetic convection in a vertical layer of ferromagnetic fluid
,”
Phys. Fluids
20
(
8
),
084101
(
2008
).
13.
A. V.
Belyaev
and
B. L.
Smorodin
, “
The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field
,”
J. Magn. Magn. Mater.
322
,
2596
2606
(
2010
).
14.
S. A.
Suslov
,
A. A.
Bozhko
,
A. S.
Sidorov
, and
G. F.
Putin
, “
Thermomagnetic convective flows in a vertical layer of ferrocolloid: Perturbation energy analysis and experimental study
,”
Phys. Rev. E
86
(
1
),
016301
(
2012
).
15.
G. K.
Batchelor
, “
Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures
,”
Q. Appl. Math.
12
,
209
233
(
1954
).
16.
R. N.
Rudakov
, “
Spectrum of perturbations and stability of convective motion between vertical plates
,”
Appl. Math. Mech.
31
,
376
383
(
1967
).
17.
C. H.
Vest
and
V. S.
Arpachi
, “
Stability of natural convection in a vertical slot
,”
J. Fluid Mech.
36
,
1
15
(
1969
).
18.
A. G.
Kirdyashkin
,
A. I.
Leont’ev
, and
N. V.
Mukhina
, “
Stability of a laminar flow of fluid in vertical layers with free convection
,”
Fluid Dyn.
6
,
884
888
(
1971
).
19.
J. E.
Hart
, “
Stability of the flow in a differentially heated inclined box
,”
J. Fluid Mech.
47
,
547
576
(
1971
).
20.
S. A.
Korpela
,
D.
Gözüm
, and
C. B.
Baxi
, “
On the stability of the conduction regime of natural convection in a vertical slot
,”
Int. J. Heat Mass Transfer
16
,
1683
1690
(
1973
).
21.
G. Z.
Gershuni
and
E. M.
Zhukhovitsky
,
Convective Stability of Incompressible Fluid
(
Keter Publications
,
Jerusalem, Israel
,
1976
).
22.
R. F.
Bergholz
, “
Instability of steady natural convection in a vertical fluid layer
,”
J. Fluid Mech.
84
,
743
768
(
1978
).
23.
J.
Mizushima
and
K.
Gotoh
, “
Nonlinear evolution of the disturbance in a natural convection induced in a vertical fluid layer
,”
J. Phys. Soc. Jpn.
52
,
1206
1214
(
1983
).
24.
K.
Fujimura
and
J.
Mizushima
, “
Nonlinear equilibrium solutions for travelling waves in a free convection between vertical parallel plates
,”
Eur. J. Mech.: B/Fluids
10
,
25
30
(
1991
).
25.
S. A.
Suslov
and
S.
Paolucci
, “
Stability of natural convection flow in a tall vertical enclosure under non-Boussinesq conditions
,”
Int. J. Heat Mass Transfer
38
,
2143
2157
(
1995
).
26.
D. A.
Bratsun
,
A. V.
Zyuzgin
, and
G. F.
Putin
, “
Nonlinear dynamics and pattern formation in a vertical fluid layer heated from the side
,”
Int. J. Heat Fluid Flow
24
,
835
852
(
2003
).
27.
A. A.
Bozhko
and
G. F.
Putin
, “
Heat transfer and flow patterns in ferrofluid convection
,”
Magnetohydrodynamics
39
(
2
),
147
168
(
2003
).
28.
S. A.
Suslov
,
A. A.
Bozhko
, and
G. F.
Putin
, “
Thermo-magneto-convective instabilities in a vertical layer of ferro-magnetic fluid
,” in
Proceedings of the XXXVI International Summer School—Conference “Advanced Problems in Mechanics”
(
IPME RAS
,
Repino, Russia
,
2008
), pp.
644
651
.
29.
P.
Dey
and
S. A.
Suslov
, “
Thermomagnetic instabilities in a vertical layer of ferrofluid: Nonlinear analysis away from a critical point
,”
Fluid Dyn. Res.
48
,
061404
(
2016
).
30.
S. A.
Suslov
and
S.
Paolucci
, “
Nonlinear analysis of convection flow in a tall vertical enclosure under non-Boussinesq conditions
,”
J. Fluid Mech.
344
,
1
41
(
1997
).
31.
S. A.
Suslov
and
S.
Paolucci
, “
Nonlinear stability of mixed convection flow under non-Boussinesq conditions. Part 1. Analysis and bifurcations
,”
J. Fluid Mech.
398
,
61
85
(
1999
).
32.
T.
Herbert
, “
On perturbation methods in nonlinear stability theory
,”
J. Fluid Mech.
126
,
167
186
(
1983
).
33.
K. G.
Pham
and
S. A.
Suslov
, “
On the definition of Landau constants in amplitude equations away from a critical point
,”
R. Soc. Open Sci.
5
,
180746
(
2018
).
34.
G. Z.
Gershuni
,
E. M.
Zhukhovitsky
, and
A. A.
Nepomnjashchy
,
Stability of Convective Flows
(
Science
,
Moscow, Russia
,
1989
) (in Russian).
35.
S. A.
Suslov
and
S.
Paolucci
, “
Stability of non-Boussinesq convection via the complex Ginzburg-Landau model
,”
Fluid Dyn. Res.
35
,
159
203
(
2004
).
36.
P.
Dey
, “
Nonlinear thermomagnetic instabilities in ferromagnetic nanofluids
,” Ph.D. thesis (
Swinburne University of Technology
,
Hawthorn, Victoria, Australia
,
2017
).
You do not currently have access to this content.