Physical cleaning techniques are of great concern to remove particulate contamination because of their low environmental impact. One of the promising candidates is based on water jets that often involve fission into droplet fragments. Particle removal is believed to be achieved by droplet-impact-induced wall shear flow. Here, we simulate a high-speed droplet impact on a dry/wet rigid wall to investigate the wall shear flow as well as water hammer after the impact. The problem is modeled by the axisymmetric compressible Navier–Stokes equations and solved by a finite volume method that can capture both shocks and material interface. As an example, we consider the impact of a spherical water droplet (200 µm in diameter) at velocity from 30 to 50 m/s against a dry/wet rigid wall. In our simulation, we can reproduce both acoustic and hydrodynamic events. In the dry wall case, the strong wall shear appears near the moving contact line at the wetted surface. On the other hand, once the wall is covered with the liquid film, the wall shear stress gets weaker as the film thickness increases—a similar trend holds for the water-hammer shock loading at the wall. According to the simulated base flow, we compute hydrodynamic force acting on small particles that are assumed to be attached at the wall, in a one-way-coupling manner. The hydrodynamic force acting on the particles is estimated under Stokes’ assumption and compared to particle adhesion of van der Waals type, enabling us to derive a simple criterion of the particle removal.

1.
X.
Li
,
A.
Strojwas
,
A.
Swecker
,
M.
Reddy
,
L.
Milor
, and
Y.-T.
Lin
, “
Modeling of defect propagation/growth for yield impact prediction in VLSI manufacturing
,”
Proc. SPIE
3216
,
167
178
(
1997
).
2.
W.
Kern
, “
The evolution of silicon wafer cleaning technology
,”
J. Electrochem. Soc.
137
,
1887
1892
(
1990
).
3.
H. F.
Okorn-Schmidt
,
F.
Holsteyns
,
A.
Lippert
,
D.
Mui
,
M.
Kawaguchi
,
C.
Lechner
,
P. E.
Frommhold
,
T.
Nowak
,
F.
Reuter
,
M. B.
Pique
,
C.
Cairos
, and
R.
Mettin
, “
Particle cleaning technologies to meet advanced semiconductor device process requirements
,”
ECS J. Solid State Sci. Technol.
3
,
N3069
N3080
(
2013
).
4.
C.
Henry
and
J.-P.
Minier
, “
Progress in particle resuspension from rough surfaces by turbulent flows
,”
Prog. Energy Combust. Sci.
45
,
1
53
(
2014
).
5.
F.-G.
Fan
,
M.
Soltani
,
G.
Ahmadi
, and
S. C.
Hart
, “
Flow-induced resuspension of rigid-link fibers from surfaces
,”
Aerosol Sci. Technol.
27
,
97
115
(
1997
).
6.
A. A.
Busnaina
,
H.
Lin
,
N.
Moumen
,
J.-w.
Feng
, and
J.
Taylor
, “
Particle adhesion and removal mechanisms in post-CMP cleaning processes
,”
IEEE Trans. Semicond. Manuf.
15
,
374
382
(
2002
).
7.
G. M.
Burdick
,
N. S.
Berman
, and
S. P.
Beaudoin
, “
Hydrodynamic particle removal from surfaces
,”
Thin Solid Films
488
,
116
123
(
2005
).
8.
M. L.
Zoeteweij
,
J. C. J.
van der Donck
, and
R.
Verslus
, “
Particle removal in linear shear flow: Model prediction and experimental validation
,”
J. Adhes. Sci. Technol.
23
,
899
911
(
2009
).
9.
J. R.
Agudo
,
G.
Luzi
,
J.
Han
,
M.
Hwang
,
J.
Lee
, and
A.
Wierschem
, “
Detection of particle motion using image processing with particular emphasis on rolling motion
,”
Rev. Sci. Instrum.
88
,
051805
(
2017
).
10.
M.
Watanabe
,
T.
Sanada
,
A.
Hayashida
, and
Y.
Isago
, “
Cleaning technique using high-speed steam-water mixed spray
,”
Solid State Phenom.
145-146
,
43
46
(
2009
).
11.
N.
Erkan
and
K.
Okamoto
, “
Full-field spreading velocity measurement inside droplets impinging on a dry solid surface
,”
Exp. Fluids
55
,
1845
(
2014
).
12.
P. E.
Frommhold
,
R.
Mettin
, and
C.-D.
Ohl
, “
Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates
,”
Exp. Fluids
56
,
76
(
2015
).
13.
C. W.
Visser
,
P. E.
Frommhold
,
S.
Wildeman
,
R.
Mettin
,
D.
Lohse
, and
C.
Sun
, “
Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns
,”
Soft Matter
11
,
1708
1722
(
2015
).
14.
G.
Brenn
,
T.
Helpioe
, and
F.
Durst
, “
A new apparatus for the production of monodisperse sprays at high flow rates
,”
Chem. Eng. Sci.
52
,
237
244
(
1997
).
15.
H.-Y.
Kim
,
S.-Y.
Park
, and
K.
Min
, “
Imaging the high-speed impact of microdrop on solid surface
,”
Rev. Sci. Instrum.
74
,
4930
4937
(
2003
).
16.
M.
Sato
,
K.
Sotoku
,
K.
Yamaguchi
,
T.
Tanaka
,
M.
Kobayashi
, and
S.
Nadahara
, “
Analysis on threshold energy of particle removal in spray cleaning technology
,”
ECS Trans.
41
,
75
82
(
2011
).
17.
W. J. N.
Fernando
,
Y. H.
Lok
,
M. M.
Don
,
V.
Madhaven
, and
W. S.
Tay
, “
Experimental and modeling studies of particle removal in post silicon chemical mechanical planarization cleaning process
,”
Thin Solid Films
519
,
3242
3248
(
2011
).
18.
F. J.
Heymann
, “
High-speed impact between a liquid drop and a solid surface
,”
J. Appl. Phys.
40
,
5113
5122
(
1969
).
19.
J. P.
Dear
and
J. E.
Field
, “
High-speed photography of surface geometry effects in liquid/solid impact
,”
J. Appl. Phys.
63
,
1015
1021
(
1988
).
20.
C. F.
Kennedy
and
J. E.
Field
, “
Damage threshold velocities for liquid impact
,”
J. Mater. Sci.
35
,
5331
5339
(
2000
).
21.
K. K.
Haller
,
Y.
Ventikos
,
D.
Poulikakos
, and
P.
Monkewitz
, “
Computational study of high-speed liquid droplet impact
,”
J. Appl. Phys.
92
,
2821
(
2002
).
22.
H.
Sasaki
,
N.
Ochiai
, and
Y.
Iga
, “
Numerical analysis of damping effect of liquid film on material in high speed liquid droplet impingement
,”
Int. J. Fluid Mach. Syst.
9
,
57
65
(
2016
).
23.
J. E.
Field
,
J. P.
Dear
, and
J. E.
Ogren
, “
The effects of target compliance on liquid drop impact
,”
J. Appl. Phys.
65
,
533
540
(
1989
).
24.
D.
Obreschkow
,
N.
Dorsaz
,
P.
Kobel
,
A.
de Bosset
,
M.
Tinguely
,
J.
Field
, and
M.
Farhat
, “
Confined shocks inside isolated liquid volumes: A new path of erosion?
,”
Phys. Fluids
23
,
101702
(
2011
).
25.
T.
Kondo
and
K.
Ando
, “
One-way-coupling simulation of cavitation accompanied by high-speed droplet impact
,”
Phys. Fluids
28
,
033303
(
2016
).
26.
A. L.
Yarin
and
D. A.
Weiss
, “
Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
173
(
1995
).
27.
R. L. V.
Wal
,
G. M.
Berger
, and
S. D.
Mozes
, “
The splash/non-splash boundary upon a dry surface and thin fluid film
,”
Exp. Fluids
40
,
53
59
(
2006
).
28.
S. T.
Thoroddsen
,
M. J.
Thoraval
,
K.
Takehara
, and
T. G.
Etoh
, “
Droplet splashing by a slingshot mechanism
,”
Phys. Rev. Lett.
106
,
034501
(
2011
).
29.
Y.
Guo
and
Y.
Lian
, “
High-speed oblique drop impact on thin liquid films
,”
Phys. Fluids
29
,
082108
(
2017
).
30.
S. A.
Banitabaei
and
A.
Amirfazli
, “
Droplet impact onto a solid sphere: Effect of wettability and impact velocity
,”
Phys. Fluids
29
,
062111
(
2017
).
31.
A. M. P.
Boelens
and
J. J.
de Pablo
, “
Simulations of splashing high and low viscosity droplets
,”
Phys. Fluids
30
,
072106
(
2018
).
32.
G.
Charalampous
and
Y.
Hardalupas
, “
Collisions of droplets on spherical particles
,”
Phys. Fluids
29
,
103305
(
2017
).
33.
M. B.
Lesser
, “
Analytic solutions of liquid-drop impact problems
,”
Proc. R. Soc. A
377
,
289
308
(
1981
).
34.
D. A.
Weiss
and
A. L.
Yarin
, “
Single drop impact onto liquid films: Neck distortion, jetting, tiny bubble entrainment, and crown formation
,”
J. Fluid Mech.
385
,
229
254
(
1999
).
35.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Morphology of drop impact on a superhydrophobic surface with macro-structures
,”
Phys. Fluids
29
,
082104
(
2017
).
36.
X.
Huang
,
K.-T.
Wan
, and
M. E.
Taslim
, “
Axisymmetric rim instability of water droplet impact on a super-hydrophobic surface
,”
Phys. Fluids
30
,
094101
(
2018
).
37.
J. R.
Agudo
,
C.
Illigmann
,
G.
Luzi
,
A.
Laukart
,
A.
Delgado
, and
A.
Wierschem
, “
Shear-induced incipient motion of a single sphere on uniform substrates at low particle Reynolds numbers
,”
J. Fluid Mech.
825
,
284
314
(
2017
).
38.
C.-Y.
Chen
,
B.
Panigrahi
,
K.-S.
Chong
,
W.-H.
Li
,
Y.-L.
Liu
, and
T.-Y.
Lu
, “
Hydrodynamic investigation of a wafer rinse process through numerical modeling and flow visualization methods
,”
J. Fluids Eng.
140
,
081106
(
2018
).
39.
S.
Song
,
K.
Soemoto
,
T.
Wakimoto
, and
K.
Katoh
, “
A study on removal of infinitesimal particles on a wall by high speed air jet (numerical simulation of hydrodynamic removal force)
,”
J. JSEM
14
,
s94
s100
(
2014
).
40.
G. L.
Chahine
,
A.
Kapahi
,
J. K.
Choi
, and
C. T.
Hsiao
, “
Modeling of surface cleaning by cavitation bubble dynamics and collapse
,”
Ultrason. Sonochem.
29
,
528
549
(
2016
).
41.
S.
Mandre
,
M.
Mani
, and
M.
Brenner
, “
Precursors to splashing of liquid droplets on a solid surface
,”
Phys. Rev. Lett.
102
,
134502
(
2009
).
42.
P.
Sharma
,
M.
Flury
, and
J.
Zhou
, “
Detachment of colloids from a solid surface by a moving air-water interface
,”
J. Colloid Interface Sci.
326
,
143
150
(
2008
).
43.
S.
Khodaparast
,
F.
Boulogne
,
C.
Poulard
, and
H. A.
Stone
, “
Water-based peeling of thin hydrophobic films
,”
Phys. Rev. Lett.
119
,
154502
(
2017
).
44.
L.
Cheng
, “
Dynamic spreading of drops impacting onto a solid surface
,”
Ind. Eng. Chem. Process Des. Dev.
16
,
192
197
(
1977
).
45.
C. W.
Visser
,
Y.
Tagawa
,
C.
Sun
, and
D.
Lohse
, “
Microdroplet impact at very high velocity
,”
Soft Matter
8
,
10732
(
2012
).
46.
G.
Allaire
,
S.
Clerc
, and
S.
Kokh
, “
A five-equation model for the simulation of interfaces between compressible fluids
,”
J. Comput. Phys.
181
,
577
616
(
2002
).
47.
G.
Perigaud
and
R.
Saurel
, “
A compressible flow model with capillary effects
,”
J. Comput. Phys.
209
,
139
178
(
2005
).
48.
K.
Mohseni
and
T.
Colonius
, “
Numerical treatment of polar coordinate singularities
,”
J. Comput. Phys.
157
,
787
795
(
2000
).
49.
K.
Nagayama
,
Y.
Mori
,
K.
Shimada
, and
M.
Nakahara
, “
Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun
,”
J. Appl. Phys.
91
,
476
482
(
2002
).
50.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
51.
P. A.
Thompson
and
M. O.
Robbins
, “
Simulations of contact-line motion: Slip and the dynamic contact angle
,”
Phys. Rev. Lett.
63
,
766
769
(
1989
).
52.
C.
Navier
,
Memoirs de l’Academie
(
Royale des Sciences de l’Institut de France
,
1823
), Vol. 1, pp.
414
416
.
53.
J. C.
Maxwell
,
The Scientific Papers of James Clerk Maxwell
(
University Press
,
1890
), Vol. 2.
54.
J. J.
Thalakkotor
and
K.
Mohseni
, “
Unified slip boundary condition for fluid flows
,”
Phys. Rev. E
94
,
023113
(
2016
).
55.
M. E.
O’Neill
, “
A sphere in contact with a plane wall in a slow linear shear flow
,”
Chem. Eng. Sci.
23
,
1293
1298
(
1968
).
56.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Elsevier
,
2011
).
57.
K. L.
Johnson
,
K.
Kendall
, and
A. D.
Roberts
, “
Surface energy and the contact of elastic solids
,”
Proc. R. Soc. A
324
,
301
313
(
1971
).
58.
K. L.
Johnson
, “
Adhesion and friction between a smooth elastic spherical asperity and a plane surface
,”
Proc. R. Soc. A
453
,
163
179
(
1997
).
59.
D. S.
Rimai
,
D. J.
Quesnel
, and
A. A.
Busnaina
, “
The adhesion of dry particles in the nanometer to micrometer-size range
,”
Colloids Surf.
165
,
3
10
(
2000
).
60.
V.
Coralic
and
T.
Colonius
, “
Finite-volume WENO scheme for viscous compressible multicomponent flows
,”
J. Comput. Phys.
274
,
95
121
(
2014
).
61.
A.
Harten
,
P. D.
Lax
, and
B.
van Leer
, “
On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
,”
SIAM Rev.
25
,
35
61
(
1983
).
62.
E.
Johnsen
and
T.
Colonius
, “
Implementation of WENO schemes in compressible multicomponent flow problems
,”
J. Comput. Phys.
219
,
715
732
(
2006
).
63.
S.
Gottlieb
and
C.-W.
Shu
, “
Total variation diminishing Runge–Kutta schemes
,”
Math. Comput.
67
,
73
85
(
1998
).
64.
E.
Johnsen
, “
Numerical simulations of non-spherical bubble collapse
,” Ph.D. thesis,
California Institute of Technology
,
2007
.
65.
K. W.
Thompson
, “
Time dependent boundary conditions for hyperbolic systems
,”
J. Comput. Phys.
68
,
1
24
(
1987
).
66.
P. A.
Thompson
,
Compressible Fluid Dynamics
(
McGraw-Hill
,
USA
,
1972
).
67.
Y.
Tatekura
,
M.
Watanabe
,
K.
Kobayashi
, and
T.
Sanada
, “
Pressure generated at the instant of impact between a liquid droplet and solid surface
,”
R. Soc. Open Sci.
5
,
181101
(
2018
).
68.
K.
Fujisawa
,
T.
Yamagata
, and
N.
Fujisawa
, “
Damping effect on impact pressure from liquid droplet impingement on wet wall
,”
Ann. Nucl. Energy
121
,
260
268
(
2018
).
69.
M.
Pasandideh-Fard
,
S.
Bhola
,
S.
Chandra
, and
J.
Mostaghimi
, “
Deposition of tin droplets on a steel plate: Simulations and experiments
,”
Int. J. Heat Mass Transfer
41
,
2929
2945
(
1998
).
70.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
(
1996
).
You do not currently have access to this content.