In this paper, a two-dimensional double diffusive natural convection in a porous cavity filled with viscoplastic fluids is simulated. The dimensional and non-dimensional macroscopic equations are presented, employing the Papanastasiou model for viscoplastic fluids and the Darcy–Brinkman–Forchheimer model for porous media. An innovative approach based on a modification of the lattice Boltzmann method is explained and validated with previous studies. The effects of the pertinent dimensionless parameters are studied in different ranges. The extensive results of streamlines, isotherms, and isoconcentration contours, yielded/unyielded regions, and local and average Nusselt and Sherwood numbers are presented and discussed.
REFERENCES
1.
A. A.
Mohamad
and A.
Kuzmin
, “A critical evaluation of force term in lattice Boltzmann method, natural convection problem
,” Int. J. Heat Mass Transfer
53
, 990
(2010
).2.
A. A.
Mehrizi
, M.
Farhadi
, and S.
Shayamehr
, “Natural convection flow of Cu-Water nanofluid in horizontal cylindrical annuli with inner triangular cylinder using lattice Boltzmann method
,” Int. Commun. Heat Mass Transfer
44
, 147
–156
(2013
).3.
H. R.
Ashorynejad
, A. A.
Mohamad
, and M.
Sheikholeslami
, “Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using lattice Boltzmann method
,” Int. J. Therm. Sci.
64
, 240
(2013
).4.
H.
Sajjadi
, M.
Salmanzadeh
, G.
Ahmadi
, and S.
Jafari
, “Turbulent indoor airflow simulation using hybrid LES/RANS model utilizing lattice Boltzmann method
,” Comput. Fluids
150
, 66
(2017
).5.
H.
Sajjadi
, M.
Salmanzadeh
, G.
Ahmadi
, and S.
Jafari
, “Simulations of indoor airflow and particle dispersion and deposition by the lattice Boltzmann method using LES and RANS approaches
,” Build. Environ.
102
, 1
(2016
).6.
H.
Sajjadi
, A. A.
Delouei
, M.
Atashafrooz
, and M.
Sheikholeslami
, “Double MRT lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid
,” Int. J. Heat Mass Transfer
126
, 489
(2018
).7.
H.
Sajjadi
, A. A.
Delouei
, M.
Sheikholeslami
, M.
Atashafrooz
, and S.
Succi
, “Simulation of three dimensional MHD natural convection using double MRT lattice Boltzmann method
,” Physica A
515
, 474
(2019
).8.
H.
Sajjadi
, M.
Salmanzadeh
, G.
Ahmadi
, and S.
Jafari
, “Lattice Boltzmann method and RANS approach for simulation of turbulent flows and particle transport and deposition
,” Particuology
30
, 62
(2017
).9.
H.
Sajjadi
and GH. R.
Kefayati
, “Turbulent and laminar natural convection in a square cavity utilizing lattice Boltzmann method
,” Heat Transfer-Asian Res.
45
, 795
(2016
).10.
K.
Javadi
and K.
Kazemi
, “Microgravity modulation effects on free convection problems LBM simulation
,” Phys. Fluids
30
, 017104
(2018
).11.
Z.
Chen
, C.
Shu
, and D.
Tan
, “Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows
,” Phys. Fluids
29
, 053601
(2017
).12.
Y.
Zhang
and Y.
Cao
, “A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus
,” Phys. Fluids
30
, 040902
(2018
).13.
R.
Mohebbi
, M.
Izadi
, and A. J.
Chamkha
, “Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid
,” Phys. Fluids
29
, 122009
(2017
).14.
K.
Walayat
, Z.
Zhang
, K.
Usman
, J.
Chang
, and M.
Liu
, “Dynamics of elliptic particle sedimentation with thermal convection
,” Phys. Fluids
30
, 103301
(2018
).15.
M.
Sadr
and M. H.
Gorji
, “A continuous stochastic model for non-equilibrium dense gases
,” Phys. Fluids
29
, 122007
(2017
).16.
R. R.
Huilgol
and GH. R.
Kefayati
, “From mesoscopic models to continuum mechanics: Newtonian and non-Newtonian fluids
,” J. Non-Newtonian Fluid Mech.
233
, 146
(2016
).17.
R. R.
Huilgol
and GH. R.
Kefayati
, “A particle distribution function approach to the equations of continuum mechanics in Cartesian, cylindrical and spherical coordinates: Newtonian and non-Newtonian fluids
,” J. Non-Newtonian Fluid Mech.
251
, 119
(2018
).18.
GH. R.
Kefayati
, H.
Tang
, A.
Chan
, and X.
Wang
, “A lattice Boltzmann model for thermal non-Newtonian fluid flows through porous media
,” Comput. Fluids
176
, 226
(2018
).19.
D. A.
Nield
and A.
Bejan
, Convection in Porous Media
, 3rd ed. (Springer
, 2006
), Vol. XXIV.20.
21.
P.
Nithiarasu
, K. N.
Seetharamu
, and T.
Sundararajan
, “Natural convection heat transfer in a fluid saturated variable porosity medium
,” Int. J. Heat Mass Transfer
40
, 3955
(1997
).22.
Z.
Guo
and T. S.
Zhao
, “A lattice Boltzmann model for convection heat transfer in porous media
,” Numer. Heat Transfer, Part B
47
, 157
(2005
).23.
Q.
Liu
, Y. L.
He
, Q.
Li
, and W. Q.
Tao
, “A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media
,” Int. J. Heat Mass Transfer
73
, 761
(2014
).24.
L.
Wang
, J.
Mi
, and Z.
Guo
, “A modified lattice Bhatnagar–Gross–Krook model for convection heat transfer in porous media
,” Int. J. Heat Mass Transfer
94
, 269
(2016
).25.
D.
Das
, P.
Biswal
, M.
Roy
, and T.
Basak
, “Role of the importance of ‘Forchheimer term’ for visualization of natural convection in porous enclosures of various shapes
,” Int. J. Heat Mass Transfer
97
, 1044
(2016
).26.
D.
Das
and T.
Basak
, “Role of discrete heating on the efficient thermal management within porous square and triangular enclosures via heatline approach
,” Int. J. Heat Mass Transfer
112
, 489
(2017
).27.
K. M.
Khanafer
and A. J.
Chamkha
, “Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium
,” Int. J. Heat Mass Transfer
42
, 2465
(1999
).28.
I.
Aleshkova
and M.
Sheremet
, “Unsteady conjugate natural convection in a square enclosure filled with a porous medium
,” Int. J. Heat Mass Transfer
53
, 5308
(2010
).29.
M.
Sheremet
and I.
Pop
, “Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model
,” Int. J. Heat Mass Transfer
79
, 137
(2014
).30.
M.
Sheremet
, I.
Pop
, and M.
Rahman
, “Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model
,” Int. J. Heat Mass Transfer
82
, 396
(2015
).31.
H.
Oztop
, K.
Al-Salem
, Y.
Varol
, and I.
Pop
, “Natural convection heat transfer in a partially opened cavity filled with porous media
,” Int. J. Heat Mass Transfer
54
, 2253
(2011
).32.
O. V.
Trevisan
and A.
Bejan
, “Mass and heat transfer by natural convection in a vertical slot filled with porous medium
,” Int. J. Heat Mass Transfer
29
, 403
(1986
).33.
B.
Goyeau
, J. P.
Songbe
, and D.
Gobin
, “Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation
,” Int. J. Heat Mass Transfer
39
, 1363
(1996
).34.
A. J.
Chamkha
and H.
Al-Naser
, “Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients
,” Int. J. Therm. Sci.
40
, 227
(2001
).35.
M.
Bourich
, A.
Amahmid
, and M.
Hasnaoui
, “Double diffusive convection in a porous enclosure submitted to cross gradients of temperature and concentration
,” Energy Convers. Manage.
45
, 1655
(2004
).36.
S.
Akbal
and F.
Baytas
, “Effects of non-uniform porosity on double diffusive natural convection in a porous cavity with partially permeable wall
,” Int. J. Therm. Sci.
47
, 875
(2008
).37.
A. J.
Chamkha
and A.
Al-Mudhaf
, “Double-diffusive natural convection in inclined porous cavities with various aspect ratios and temperature-dependent heat source or sink
,” Heat Mass Transfer
44
, 679
(2008
).38.
A.
Mchirgui
, N.
Hidouri
, M.
Magherbi
, and A. B.
Brahim
, “Second law analysis in double diffusive convection through an inclined porous cavity
,” Comput. Fluids
96
, 105
(2014
).39.
A. A.
Mohamad
, R.
Bennacer
, and J.
Azaiez
, “Double diffusion natural convection in a rectangular enclosure filled with binary fluid saturated porous media: The effect of lateral aspect ratio
,” Phys. Fluids
16
, 184
(2004
).40.
P.
Bera
, S.
Pippal
, and A. K.
Sharma
, “A thermal non-equilibrium approach on double-diffusive natural convection in a square porous-medium cavity
,” Int. J. Heat Mass Transfer
78
, 1080
(2014
).41.
S. C.
Hirata
, B.
Goyeau
, and D.
Gobin
, “Stability of thermosolutal natural convection in superposed fluid and porous layers
,” Transp. Porous Media
78
, 525
(2009
).42.
GH. R.
Kefayati
, “Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer)
,” Int. J. Heat Mass Transfer
94
, 539
(2016
).43.
GH. R.
Kefayati
, “Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part II: Entropy generation)
,” Int. J. Heat Mass Transfer
94
, 582
(2016
).44.
Q. Y.
Zhu
, Y. J.
Zhuang
, and H. Z.
Yu
, “Three-dimensional numerical investigation on thermosolutal convection of power-law fluids in anisotropic porous media
,” Int. J. Heat Mass Transfer
104
, 897
(2017
).45.
D. M.
Stefanescu
, Science and Engineering of Casting Solidification
(Springer
, New York
, 2002
).46.
T. J.
Smith
, Modelling the Flow and Solidification of Metals
(Martinus Nijhoff Publishers
, Boston
, 1987
).47.
D.
Vola
, L.
Boscardin
, and J.
Latche
, “Laminar unsteady flows of Bingham fluids: A numerical strategy and some benchmark results
,” J. Comput. Phys.
187
, 441
(2003
).48.
O.
Turan
, N.
Chakraborty
, and R. J.
Poole
, “Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls
,” J. Non-Newtonian Fluid Mech.
165
, 901
(2010
).49.
O.
Turan
, R. J.
Poole
, and N.
Chakraborty
, “Aspect ratio effects in laminar natural convection of Bingham fluids in rectangular enclosures with differentially heated side walls
,” J. Non-Newtonian Fluid Mech.
166
, 208
(2011
).50.
O.
Turan
, N.
Chakraborty
, and R. J.
Poole
, “Laminar Rayleigh-Bénard convection of yield stress fluids in a square enclosure
,” J. Non-Newtonian Fluid Mech.
171-172
, 83
(2012
).51.
A.
Davaille
, B.
Gueslin
, A.
Massmeyer
, and E.
Di Giuseppe
, “Thermal instabilities in a yield stress fluid: Existence and morphology
,” J. Non-Newtonian Fluid Mech.
193
, 144
(2013
).52.
A.
Massmeyer
, E.
Di Giuseppe
, A.
Davaille
, T.
Rolf
, and P. J.
Tackley
, “Numerical simulation of thermal plumes in a Herschel–Bulkley fluid
,” J. Non-Newtonian Fluid Mech.
195
, 32
(2013
).53.
I.
Karimfazli
and I. A.
Frigaard
, “Natural convection flows of a Bingham fluid in a long vertical channel
,” J. Non-Newtonian Fluid Mech.
201
, 39
(2013
).54.
R. R.
Huilgol
and GH. R.
Kefayati
, “Natural convection problem in a Bingham fluid using the operator-splitting method
,” J. Non-Newtonian Fluid Mech.
220
, 22
(2015
).55.
I.
Karimfazli
, I. A.
Frigaard
, and A.
Wachs
, “Thermal plumes in viscoplastic fluids: Flow onset and development
,” J. Fluid Mech.
787
, 474
(2016
).56.
I.
Karimfazli
and I. A.
Frigaard
, “Flow, onset and stability: Qualitative analysis of yield stress fluid flow in enclosures
,” J. Non-Newtonian Fluid Mech.
238
, 224
(2016
).57.
A.
Dutta
, A. K.
Gupta
, G.
Mishra
, and R. P.
Chhabra
, “Effect of fluid yield stress and of angle of tilt on natural convection from a square bar in a square annulus
,” Comput. Fluids
160
, 138
(2018
).58.
GH. R.
Kefayati
and H.
Tang
, “Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: One cylinder)
,” Int. J. Heat Mass Transfer
123
, 1138
(2018
).59.
GH. R.
Kefayati
and H.
Tang
, “Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part II: Two cylinders)
,” Int. J. Heat Mass Transfer
123
, 1163
(2018
).60.
GH. R.
Kefayati
and H.
Tang
, “Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part III: Four cylinders)
,” Int. J. Heat Mass Transfer
123
, 1182
(2018
).61.
S.
Yigit
, R. J.
Poole
, and N.
Chakraborty
, “Effects of aspect ratio on natural convection of Bingham fluids in rectangular enclosures with differentially heated horizontal walls heated from below
,” Int. J. Heat Mass Transfer
80
, 727
(2015
).62.
GH. R.
Kefayati
, “Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity
,” Int. J. Heat Mass Transfer
116
, 762
(2018
).63.
GH. R.
Kefayati
and H.
Tang
, “Mesoscopic simulation of double-diffusive natural convection and entropy generation of Bingham fluid in an open cavity
,” Eur. J. Mech.: B/Fluids
69
, 1
(2018
).64.
65.
T. C.
Papanastasiou
, “Flow of materials with yield
,” J. Rheol.
31
, 385
(1987
).66.
Y.
Dimakopoulos
, M.
Pavlidis
, and J.
Tsamopoulos
, “Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model
,” J. Non-Newtonian Fluid Mech.
200
, 34
(2013
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.