Development of superhydrophobic surfaces is of great interest for drag-reducing applications as air layers retained underwater greatly reduce fluidic drag. However, liquid flow over these surfaces can result in the collapse of the lubricating air layer. Here, we investigate the dynamic stability of retained air layers on three different superhydrophobic surfaces against repeated immersion and motion through various viscous liquids. The three surfaces investigated are a highly ordered polytetrafluoroethylene micropillar array, a two-level hierarchical random polycarbonate nanofur, and a double-scale hierarchical Teflon AF wrinkled surface. Both repeated immersions and contamination by viscous liquids accelerated the rate of plastron decay on the pillar array and the nanofur, while the Teflon wrinkles remained dry. Five topographical features were identified as correlated to a dynamically stable retained air layer, and a relation between these stability-enhancing parameters and the drag-reducing capabilities is found. Furthermore, resistance of superhydrophobic surfaces against contamination is studied and the directionality of the Cassie-to-Wenzel wetting transition on air-retaining surfaces is demonstrated. Together, an understanding of these properties allows for the rational design of new superhydrophobic surfaces fit for application.

1.
W.
Barthlott
,
M.
Mail
, and
C.
Neinhuis
, “
Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications
,”
Philos. Trans. R. Soc., A
374
,
20160191
(
2016
).
2.
P.
Ditsche-Kuru
,
E. S.
Schneider
,
J.-E.
Melskotte
,
M.
Brede
,
A.
Leder
, and
W.
Barthlott
, “
Superhydrophobic surfaces of the water bug Notonecta glauca: A model for friction reduction and air retention
,”
Beilstein J. Nanotechnol.
2
,
137
(
2011
).
3.
T.-H.
Kim
,
S.-H.
Ha
,
N.-S.
Jang
,
J.
Kim
,
J. H.
Kim
,
J.-K.
Park
,
D.-W.
Lee
,
J.
Lee
,
S.-H.
Kim
, and
J.-M.
Kim
, “
Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design
,”
ACS Appl. Mater. Interfaces
7
,
5289
(
2015
).
4.
A.
Balmert
,
H. F.
Bohn
,
P.
Ditsche-Kuru
, and
W.
Barthlott
, “
Dry under water: Comparative morphology and functional aspects of air-retaining insect surfaces
,”
J. Morphol.
272
,
442
(
2011
).
5.
L. R.
Scarratt
,
U.
Steiner
, and
C.
Neto
, “
A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces
,”
Adv. Colloid Interface Sci.
246
,
133
(
2017
).
6.
D.
Helmer
,
N.
Keller
,
F.
Kotz
,
F.
Stolz
,
C.
Greiner
,
T. M.
Nargang
,
K.
Sachsenheimer
, and
B. E.
Rapp
, “
Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications
,”
Sci. Rep.
7
,
15078
(
2017
).
7.
F.
Vüllers
,
G.
Gomard
,
J. B.
Preinfalk
,
E.
Klampaftis
,
M.
Worgull
,
B.
Richards
,
H.
Hölscher
, and
M. N.
Kavalenka
, “
Bioinspired superhydrophobic highly transmissive films for optical applications
,”
Small
12
,
6144
(
2016
).
8.
E.
Gogolides
,
K.
Ellinas
, and
A.
Tserepi
, “
Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems
,”
Microelectron. Eng.
132
,
135
(
2015
).
9.
L.
Cao
,
A. K.
Jones
,
V. K.
Sikka
,
J.
Wu
, and
D.
Gao
, “
Anti-icing superhydrophobic coatings
,”
Langmuir
25
,
12444
(
2009
).
10.
M. N.
Kavalenka
,
F.
Vüllers
,
S.
Lischker
,
C.
Zeiger
,
A.
Hopf
,
M.
Röhrig
,
B. E.
Rapp
,
M.
Worgull
, and
H.
Hölscher
, “
Bioinspired air-retaining nanofur for drag reduction
,”
ACS Appl. Mater. Interfaces
7
,
10651
(
2015
).
11.
J.-S.
Koh
,
E.
Yang
,
G.-P.
Jung
,
S.-P.
Jung
,
J. H.
Son
,
S.-I.
Lee
,
P. G.
Jablonski
,
R. J.
Wood
,
H.-Y.
Kim
, and
K.-J.
Cho
, “
Jumping on water: Surface tension-dominated jumping of water striders and robotic insects
,”
Science
349
,
517
(
2015
).
12.
N. M.
Oliveira
,
A. I.
Neto
,
W.
Song
, and
J. F.
Mano
, “
Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface
,”
Appl. Phys. Express
3
,
085205
(
2010
).
13.
A. K.
Gnanappa
,
E.
Gogolides
,
F.
Evangelista
, and
M.
Riepen
, “
Contact line dynamics of a superhydrophobic surface: Application for immersion lithography
,”
Microfluid. Nanofluid.
10
,
1351
(
2011
).
14.
C.
Lee
,
C.-H.
Choi
, and
C.-J.
Kim
, “
Superhydrophobic drag reduction in laminar flows: A critical review
,”
Exp. Fluids
57
,
176
(
2016
).
15.
L.
Gao
and
T. J.
McCarthy
, “
The ‘lotus effect’ explained: Two reasons why two length scales of topography are important
,”
Langmuir
22
,
2966
(
2006
).
16.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Mater. Res.
38
,
71
(
2008
).
17.
J. C.
Brennan
,
N. R.
Geraldi
,
R. H.
Morris
,
D. J.
Fairhurst
,
G.
McHale
, and
M. I.
Newton
, “
Flexible conformable hydrophobized surfaces for turbulent flow drag reduction
,”
Sci. Rep.
5
,
10267
(
2015
).
18.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
(
1944
).
19.
H.
Liu
,
S.
Szunerits
,
W.
Xu
, and
R.
Boukherroub
, “
Preparation of superhydrophobic coatings on zinc as effective corrosion barriers
,”
ACS Appl. Mater. Interfaces
1
,
1150
(
2009
).
20.
Y.
Yin
,
T.
Liu
,
S.
Chen
,
T.
Liu
, and
S.
Cheng
, “
Structure stability and corrosion inhibition of super-hydrophobic film on aluminum in seawater
,”
Appl. Surf. Sci.
255
,
2978
(
2008
).
21.
V.
Hisler
,
H.
Jendoubi
,
C.
Hairaye
,
L.
Vonna
,
V.
Le Houérou
,
F.
Mermet
,
M.
Nardin
, and
H.
Haidara
, “
Tensiometric characterization of superhydrophobic surfaces as compared to the sessile and bouncing drop methods
,”
Langmuir
32
,
7765
(
2016
).
22.
K. B.
Golovin
,
J. W.
Gose
,
M.
Perlin
,
S. L.
Ceccio
, and
A.
Tuteja
, “
Bioinspired surfaces for turbulent drag reduction
,”
Philos. Trans. R. Soc., A
374
,
20160189
(
2016
).
23.
T.
Lee
,
E.
Charrault
, and
C.
Neto
, “
Interfacial slip on rough, patterned and soft surfaces: A review of experiments and simulations
,”
Adv. Colloid Interface Sci.
210
,
21
(
2014
).
24.
J.
Ou
,
B.
Perot
, and
J. P.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
(
2004
).
25.
M.
Amabili
,
A.
Giacomello
,
S.
Meloni
, and
C. M.
Casciola
, “
Collapse of superhydrophobicity on nanopillared surfaces
,”
Phys. Rev. Fluids
2
,
034202
(
2017
).
26.
C. F.
Carlborg
and
W.
van der Wijngaart
, “
Sustained superhydrophobic friction reduction at high liquid pressures and large flows
,”
Langmuir
27
,
487
(
2011
).
27.
D.
Dilip
,
N. K.
Jha
,
R. N.
Govardhan
, and
M.
Bobji
, “
Controlling air solubility to maintain ‘Cassie’ state for sustained drag reduction
,”
Colloids Surf., A
459
,
217
(
2014
).
28.
Y.
Xue
,
P.
Lv
,
H.
Lin
, and
H.
Duan
, “
Underwater superhydrophobicity: Stability, design and regulation, and applications
,”
Appl. Mech. Rev.
68
,
030803
(
2016
).
29.
A. A.
Hemeda
and
H. V.
Tafreshi
, “
General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts
,”
Langmuir
30
,
10317
(
2014
).
30.
P.
Forsberg
,
F.
Nikolajeff
, and
M.
Karlsson
, “
Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure
,”
Soft Matter
7
,
104
(
2011
).
31.
M. S.
Bobji
,
S. V.
Kumar
,
A.
Asthana
, and
R. N.
Govardhan
, “
Underwater sustainability of the ‘Cassie’ state of wetting
,”
Langmuir
25
,
12120
(
2009
).
32.
R.
Poetes
,
K.
Holtzmann
,
K.
Franze
, and
U.
Steiner
, “
Metastable underwater superhydrophobicity
,”
Phys. Rev. Lett.
105
,
166104
(
2010
).
33.
C. R.
Crick
and
I. P.
Parkin
, “
Water droplet bouncing—A definition for superhydrophobic surfaces
,”
Chem. Commun.
47
,
12059
(
2011
).
34.
Y. C.
Jung
and
B.
Bhushan
, “
Dynamic effects of bouncing water droplets on superhydrophobic surfaces
,”
Langmuir
24
,
6262
(
2008
).
35.
J.
Shieh
,
F. J.
Hou
,
Y. C.
Chen
,
H. M.
Chen
,
S. P.
Yang
,
C. C.
Cheng
, and
H. L.
Chen
, “
Robust airlike superhydrophobic surfaces
,”
Adv. Mater.
22
,
597
(
2010
).
36.
A.
Checco
,
B. M.
Ocko
,
A.
Rahman
,
C. T.
Black
,
M.
Tasinkevych
,
A.
Giacomello
, and
S.
Dietrich
, “
Collapse and reversibility of the superhydrophobic state on nanotextured surfaces
,”
Phys. Rev. Lett.
112
,
216101
(
2014
).
37.
R. N.
Govardhan
,
G. S.
Srinivas
,
A.
Asthana
, and
M. S.
Bobji
, “
Time dependence of effective slip on textured hydrophobic surfaces
,”
Phys. Fluids
21
,
052001
(
2009
).
38.
M. A.
Samaha
,
H. V.
Tafreshi
, and
M.
Gad-el Hak
, “
Influence of flow on longevity of superhydrophobic coatings
,”
Langmuir
28
,
9759
(
2012
).
39.
B. V.
Hokmabad
and
S.
Ghaemi
, “
Effect of flow and particle-plastron collision on the longevity of superhydrophobicity
,”
Sci. Rep.
7
,
41448
(
2017
).
40.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
(
1986
).
41.
O. V.
Voinov
, “
Hydrodynamics of wetting
,”
Fluid Dyn.
11
,
714
(
1976
).
42.
A.
Marchand
,
T. S.
Chan
,
J. H.
Snoeijer
, and
B.
Andreotti
, “
Air entrainment by contact lines of a solid plate plunged into a viscous fluid
,”
Phys. Rev. Lett.
108
,
204501
(
2012
).
43.
T. S.
Chan
,
S.
Srivastava
,
A.
Marchand
,
B.
Andreotti
,
L.
Biferale
,
F.
Toschi
, and
J. H.
Snoeijer
, “
Hydrodynamics of air entrainment by moving contact lines
,”
Phys. Fluids
25
,
074105
(
2013
).
44.
E.
Vandre
,
M. S.
Carvalho
, and
S.
Kumar
, “
On the mechanism of wetting failure during fluid displacement along a moving substrate
,”
Phys. Fluids
25
,
102103
(
2013
).
45.
E.
Ramé
and
S.
Garoff
, “
Microscopic and macroscopic dynamic interface shapes and the interpretation of dynamic contact angles
,”
J. Colloid Interface Sci.
177
,
234
(
1996
).
46.
G.
Delon
,
M.
Fermigier
,
J. H.
Snoeijer
, and
B.
Andreotti
, “
Relaxation of a dewetting contact line. Part 2. Experiments
,”
J. Fluid Mech.
604
,
55
75
(
2008
).
47.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
(
2013
).
48.
N.
Gao
,
M.
Chiu
, and
C.
Neto
, “
Receding contact line motion on nanopatterned and micropatterned polymer surfaces
,”
Langmuir
33
,
12602
(
2017
).
49.
M. N.
Kavalenka
,
F.
Vüllers
,
J.
Kumberg
,
C.
Zeiger
,
V.
Trouillet
,
S.
Stein
,
T. T.
Ava
,
C.
Li
,
M.
Worgull
, and
H.
Hölscher
, “
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
,”
Sci. Rep.
7
,
39970
(
2017
).
50.
M.
Röhrig
,
M.
Mail
,
M.
Schneider
,
H.
Louvin
,
A.
Hopf
,
T.
Schimmel
,
M.
Worgull
, and
H.
Hölscher
, “
Nanofur for biomimetic applications
,”
Adv. Mater. Interfaces
1
,
1300083
(
2014
).
51.
L. R. J.
Scarratt
,
B. S.
Hoatson
,
E. S.
Wood
,
B. S.
Hawkett
, and
C.
Neto
, “
Durable superhydrophobic surfaces via spontaneous wrinkling of Teflon AF
,”
ACS Appl. Mater. Interfaces
8
,
6743
(
2016
).
52.
M.
Röhrig
, “
Fabrication and analysis of bio-inspired smart surfaces
,” Ph.D. thesis,
Karlsruhe Institute of Technology (KIT)
,
Karlsruhe
,
2014
, Zugl.: Karlsruhe, KIT, Diss., 2013.
53.
See www.gimp.org for “GNU Image Manipulation Program”.
54.
J.-H.
Kim
and
J. P.
Rothstein
, “
Delayed lubricant depletion on liquid-infused randomly rough surfaces
,”
Exp. Fluids
57
,
81
(
2016
).
55.
J.
Wang
,
B.
Wang
, and
D.
Chen
, “
Underwater drag reduction by gas
,”
Friction
2
,
295
(
2014
).
56.
B.
Emami
,
A. A.
Hemeda
,
M. M.
Amrei
,
A.
Luzar
,
M.
Gad-el Hak
, and
H. V.
Tafreshi
, “
Predicting longevity of submerged superhydrophobic surfaces with parallel grooves
,”
Phys. Fluids
25
,
062108
(
2013
).
57.
M.
Lee
,
C.
Yim
, and
S.
Jeon
, “
Highly stable superhydrophobic surfaces under flow conditions
,”
Appl. Phys. Lett.
106
,
011605
(
2015
).
58.
Y.
Xiang
,
Y.
Xue
,
P.
Lv
,
D.
Li
, and
H.
Duan
, “
Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces
,”
Soft Matter
12
,
4241
(
2016
).
59.
W.
Barthlott
,
T.
Schimmel
,
S.
Wiersch
,
K.
Koch
,
M.
Brede
,
M.
Barczewski
,
S.
Walheim
,
A.
Weis
,
A.
Kaltenmaier
,
A.
Leder
, and
H. F.
Bohn
, “
The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water
,”
Adv. Mater.
22
,
2325
(
2010
).
60.
H. K.
Webb
,
R. J.
Crawford
, and
E. P.
Ivanova
, “
Wettability of natural superhydrophobic surfaces
,”
Adv. Colloid Interface Sci.
210
,
58
(
2014
).
61.
E.
Bormashenko
, “
Progress in understanding wetting transitions on rough surfaces
,”
Adv. Colloid Interface Sci.
222
,
92
(
2015
).
62.
J.-H.
Kim
,
H. P.
Kavehpour
, and
J. P.
Rothstein
, “
Dynamic contact angle measurements on superhydrophobic surfaces
,”
Phys. Fluids
27
,
032107
(
2015
).
63.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
,
1073
(
2010
).
64.
J.
Genzer
and
K.
Efimenko
, “
Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review
,”
Biofouling
22
,
339
(
2006
).
65.
G. D.
Bixler
and
B.
Bhushan
, “
Biofouling: Lessons from nature
,”
Philos. Trans. R. Soc., A
370
,
2381
(
2012
).
66.
L.
Xiao
,
J. A.
Finlay
,
M.
Röhrig
,
S.
Mieszkin
,
M.
Worgull
,
H.
Hölscher
,
J. A.
Callow
,
M. E.
Callow
,
M.
Grunze
, and
A.
Rosenhahn
, “
Topographic cues guide the attachment of diatom cells and algal zoospores
,”
Biofouling
34
,
86
(
2018
).
67.
M. E.
Callow
,
A. R.
Jennings
,
A. B.
Brennan
,
C. E.
Seegert
,
A.
Gibson
,
L.
Wilson
,
A.
Feinberg
,
R.
Baney
, and
J. A.
Callow
, “
Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha
,”
Biofouling
18
,
229
(
2002
).
68.
X.
Zhang
,
L.
Wang
, and
E.
Levanen
, “
Superhydrophobic surfaces for the reduction of bacterial adhesion
,”
RSC Adv.
3
,
12003
(
2013
).
69.
B. J.
Privett
,
J.
Youn
,
S. A.
Hong
,
J.
Lee
,
J.
Han
,
J. H.
Shin
, and
M. H.
Schoenfisch
, “
Antibacterial fluorinated silica colloid superhydrophobic surfaces
,”
Langmuir
27
,
9597
(
2011
).
70.
J. T.
Simpson
,
S. R.
Hunter
, and
T.
Aytug
, “
Superhydrophobic materials and coatings: A review
,”
Rep. Prog. Phys.
78
,
086501
(
2015
).
71.
K.
Anselme
,
P.
Davidson
,
A.
Popa
,
M.
Giazzon
,
M.
Liley
, and
L.
Ploux
, “
The interaction of cells and bacteria with surfaces structured at the nanometre scale
,”
Acta Biomater.
6
,
3824
(
2010
).
72.
A. K.
Epstein
,
D.
Hong
,
P.
Kim
, and
J.
Aizenberg
, “
Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces
,”
New J. Phys.
15
,
095018
(
2013
).

Supplementary Material

You do not currently have access to this content.