This study explores the stability characteristics and nonlinear evolution of internal jets in rotating stratified fluids using a combination of direct numerical simulations and linear instability analyses. Our ultimate goal is the assessment of the potential impact of the Earth’s rotation on relatively small-scale structures, exemplified by turbulent wakes generated by propagating bluff objects in the ocean. We question the popular notion that ascribes a secondary role to the Coriolis effects in large Rossby number (Ro) systems. It is shown that the Earth’s rotation can substantially influence circulation patterns with Rossby numbers as high as Ro ∼ 103. Therefore, such effects must be taken into account in the numerical and theoretical models of finescale (∼10–100 m) processes in the ocean. We present a series of examples in which planetary rotation controls flows with large but finite values of Ro through centrifugal destabilization. These calculations reveal that centrifugal instabilities can affect fluid motion either directly, by modifying the basic state, or indirectly, by preferentially eliminating anticyclonic coherent vortices that form in the course of dynamic destabilization of jets. The results of this study have potentially significant geophysical implications in terms of elucidating mechanisms of energy cascade to progressively smaller scales. In the naval context, we anticipate that our investigation could influence the development of algorithms for detection and analysis of late wakes, generated by propagating submersibles in the ocean.

1.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
Spectral Methods in Fluid Dynamics
, Springer Series in Computational Physics (
Springer-Verlag
,
1987
), p.
567
.
2.
Carnevale
,
G. F.
,
Kloosterziel
,
R. C.
, and
Orlandi
,
P.
, “
Inertial and barotropic instabilities of a free current in three-dimensional rotating flow
,”
J. Fluid Mech.
725
,
117
151
(
2013
).
3.
Dewar
,
W. K.
,
McWilliams
,
J. C.
, and
Molemaker
,
M. J.
, “
Centrifugal instability and mixing in the California undercurrent
,”
J. Phys. Oceanogr.
45
,
1224
1241
(
2015
).
4.
Gula
,
J.
,
Molemaker
,
M. J.
, and
McWilliams
,
J. C.
, “
Topographic generation of submesoscale centrifugal instability and energy dissipation
,”
Nat. Commun.
7
,
12811
(
2016
).
5.
Hua
,
B. L.
,
Moore
,
D. W.
, and
Le Gentil
,
S.
, “
Inertial nonlinear equilibration of equatorial flows
,”
J. Fluid Mech.
331
,
345
371
(
1997
).
6.
Ivey
,
G. N.
,
Winters
,
K. B.
, and
Koseff
,
J. R.
, “
Density stratification, turbulence, but how much mixing?
,”
Annu. Rev. Fluid Mech.
40
,
169
184
(
2008
).
7.
Jiao
,
Y.
and
Dewar
,
W. K.
, “
The energetics of centrifugal instability
,”
J. Phys. Oceanogr.
45
,
1554
1573
(
2015
).
8.
Kloosterziel
,
R. C.
and
Carnevale
,
G. F.
, “
Vertical scale selection in inertial instability
,”
J. Fluid Mech.
594
,
249
269
(
2008
).
9.
Kloosterziel
,
R. C.
,
Carnevale
,
G. F.
, and
Orlandi
,
P.
, “
Equatorial inertial instability with full Coriolis force
,”
J. Fluid Mech.
825
,
69
108
(
2017
).
10.
Lin
,
J. T.
and
Pao
,
Y. H.
, “
Wakes in stratified fluids
,”
Annu. Rev. Fluid Mech.
11
,
317
338
(
1979
).
11.
Marshall
,
J.
,
Adcroft
,
A.
,
Hill
,
C.
,
Perelman
,
L.
, and
Heisey
,
C.
, “
A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers
,”
J. Geophys. Res.
102
(
C3
),
5753
5766
, https://doi.org/10.1029/96jc02775 (
1997a
).
12.
Marshall
,
J.
,
Hill
,
C.
,
Perelman
,
L.
, and
Adcroft
,
A.
, “
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
,”
J. Geophys. Res.
102
(
C3
),
5733
5752
, https://doi.org/10.1029/96jc02776 (
1997b
).
13.
Meunier
,
P.
and
Spedding
,
G. R.
, “
A loss of memory in stratified momentum wakes
,”
Phys. Fluids
16
,
298
303
(
2004
).
14.
Meunier
,
P.
,
Diamessis
,
P. J.
, and
Spedding
,
G. R.
, “
Self-preservation in stratified momentum wakes
,”
Phys. Fluids
18
,
106601
(
2006
).
15.
Okubo
,
A.
, “
Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences
,”
Deep-Sea Res. Oceanogr. Abstr.
17
,
445
454
(
1970
).
16.
Pedlosky
,
J.
,
Geophysical Fluid Dynamics
(
Springer
,
1987
), p.
710
.
17.
Poulin
,
F. J.
and
Flierl
,
G. R.
, “
The nonlinear evolution of barotropically unstable jets
,”
J. Phys. Oceanogr.
33
,
2173
2192
(
2003
).
18.
Rayleigh
,
Lord
, “
On the dynamics of revolving fluids
,”
Proc. R. Soc. A
93
,
148
154
(
1917
).
19.
Redford
,
J. A.
,
Lund
,
T. S.
, and
Coleman
,
G. N.
, “
A numerical study of weakly stratified turbulent wake
,”
J. Fluid Mech.
776
,
568
609
(
2015
).
20.
Ribstein
,
B.
,
Plougonven
,
R.
, and
Zeitlin
,
V.
, “
Inertial versus baroclinic instability of the Bickley jet in continuously stratified rotating fluid
,”
J. Fluid Mech.
743
,
1
31
(
2014
).
21.
Richards
,
K. J.
and
Edwards
,
N. R.
, “
Lateral mixing in the equatorial Pacific: The importance of inertial instability
,”
Geophys. Res. Lett.
30
,
1888
, https://doi.org/10.1029/2003GL017768 (
2003
).
22.
Smyth
,
W. D.
, “
Dissipation-range geometry and scalar spectra in sheared stratified turbulence
,”
J. Fluid Mech.
401
,
209
242
(
1999
).
23.
Spedding
,
G. R.
, “
The evolution of initially turbulent bluff-body wakes at high internal Froude number
,”
J. Fluid Mech.
337
,
283
301
(
1997
).
24.
Spedding
,
G. R.
, “
Wake signature detection
,”
Annu. Rev. Fluid Mech.
46
,
273
302
(
2014
).
25.
Spedding
,
G. R.
,
Browand
,
F. K.
, and
Fincham
,
A. M.
, “
Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid
,”
J. Fluid Mech.
314
,
53
103
(
1996
).
26.
Sutyrin
,
G. G.
and
Radko
,
T.
, “
The fate of pancake vortices
,”
Phys. Fluids
29
,
031701
(
2017
).
27.
Tennekes
,
H.
and
Lumley
,
J. L.
,
A First Course in Turbulence
(
The MIT Press
,
1972
).
28.
Thorpe
,
S. A.
,
The Turbulent Ocean
(
Cambridge University Press
,
New York
,
2005
).
29.
Turner
,
J. S.
,
Buoyancy Effects in Fluids
(
Cambridge University Press
,
1979
).
30.
Vortmeyer-Kley
,
R.
,
Gräwe
,
U.
, and
Feudel
,
U.
, “
Detecting and tracking eddies in oceanic flow fields: A Lagrangian descriptor based on the modulus of vorticity
,”
Nonlinear Processes Geophys.
23
,
159
173
(
2016
).
31.
Weiss
,
J.
, “
The dynamics of enstrophy transfer in two-dimensional hydrodynamics
,”
Physica D
48
,
273
294
(
1991
).
32.
Yim
,
E.
,
Billant
,
P.
, and
Menesguen
,
C.
, “
Stability of an isolated pancake vortex in continuously stratified-rotating fluids
,”
J. Fluid Mech.
801
,
508
553
(
2016
).
33.
Zeitlin
,
V.
, “
Symmetric instability drastically changes upon inclusion of the full Coriolis force
,”
Phys. Fluids
30
,
061701
(
2018
).
You do not currently have access to this content.