A modified version of Prandtl’s mixing length closure model is applied to the two-dimensional turbulent classical far wake with a variable mainstream flow. This modified version of Prandtl’s mixing length model has been previously applied to the two dimensional turbulent classical wake where the mainstream speed is constant. The model is able to address some of the serious criticisms on the applicability of Prandtl’s mixing length model to free shear flows. For instance, the model is complete in that the mixing length is derived in a systematic way and a wake boundary extending to infinity is predicted. In this work, the effect of a variable mainstream flow on the expression for the mixing length and the effective width of the wake is examined. For variable mainstream flows, it is shown that the effective width is not only proportional to the mixing length but also inversely proportional to the slip velocity. For this problem, the power is conserved. The invariant solution corresponding to the conserved quantity is obtained. The flow behavior is analyzed for a constant, a decelerating, and an accelerating ideal slip-flow.

1.
D.
Barros
,
J.
Borée
, and
B. R.
Noack
, “
Resonances in the forced turbulent wake past a 3D blunt body
,”
Phys. Fluids
28
,
065104
(
2016
).
2.
P.
Ouro
,
C. A. M. E.
Wilson
,
P.
Evans
, and
A.
Angeloudis
, “
Large-eddy simulation of shallow turbulent wakes behind a conical island
,”
Phys. Fluids
29
,
126601
(
2017
).
3.
A. J.
Hutchinson
and
D. P.
Mason
, “
Revised Prandtl mixing length model applied to the two-dimensional turbulent classical wake
,”
Int. J. Non-Linear Mech.
77
,
162
171
(
2015
).
4.
B.
Lautrup
,
Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World
, 1st ed. (
CRC Press
,
2004
), Chap. 25.
5.
S.
Goldstein
, “
On the two-dimensional steady flow of a viscous fluid behind a solid body
,”
Proc. R. Soc. A
142
,
545
562
(
1933
).
6.
G.
Birkhoff
and
E. H.
Zarantonello
,
Jets, Wakes and Cavities
(
Academic Press
,
New York
,
1957
).
7.
A.
Herczynski
,
P. D.
Weidman
, and
G. I.
Burde
, “
Two-fluid jets and wakes
,”
Phys. Fluids
16
(
4
),
1037
1048
(
2004
).
8.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
9.
J.
Boussinesq
, “
Théorie de l’écoulement tourbillant
,”
Mém. Prés. Acad. Sci.
23
,
46
50
(
1877
).
10.
T.
Cebeci
,
Analysis of Turbulent Flows
(
Elsevier
,
Oxford
,
2004
).
11.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge
,
1972
).
12.
A. J.
Hutchinson
,
D. P.
Mason
, and
F. M.
Mahomed
, “
Solutions for the turbulent classical wake using Lie symmetry methods
,”
Commun. Nonlinear Sci. Numer. Simul.
23
,
51
70
(
2015
).
13.
A. J.
Hutchinson
and
D. P.
Mason
, “
Lie symmetry methods applied to the turbulent wake of a symmetric self-propelled body
,”
Appl. Math. Modell.
40
,
3062
3080
(
2016
).
14.
L.
Prandtl
, in
Proceedings of the Second International Congress for Applied Mechanics
,
Zurich
,
1926
.
15.
M. R.
Doshi
and
W. N.
Gill
, “
A note on the mixing length theory of turbulent flow
,”
AIChE J.
16
(
5
),
885
888
(
1970
).
16.
L. M.
Swain
, “
On the turbulent wake behind a body of revolution
,”
Proc. R. Soc. A
125
,
647
659
(
1929
).
17.
L.
Prandtl
,
Report on Investigation of Developed Turbulence
(
National Advisory Committee for Aeronautics
,
Washington, D.C., USA
,
1949
).
18.
D. H.
Rudy
and
D. M.
Bushnell
, “
A rational approach to the use of Prandtl’s mixing length model in free turbulent shear flow calculations
,” in
Free Turbulent Shear Flows
(
NASA
,
1972
), Vol. 1, NASA SP-321.
19.
R.
Naz
,
F. M.
Mahomed
, and
D. P.
Mason
, “
Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics
,”
Appl. Math. Comput.
205
(
1
),
212
230
(
2008
).
20.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
, Graduate Texts in Mathematics Vol. 107 (
Springer-Verlag
,
New York
,
1986
).
21.
H.
Steudel
, “
Über die zuordnung zwischen invarianzeigenschaften und erhaltungssätzen
,”
Z. Naturforsch. A
17
,
129
132
(
1962
).
22.
A. H.
Kara
and
F. M.
Mahomed
, “
Relationship between symmetries and conservation laws
,”
Int. J. Theor. Phys.
39
,
23
40
(
2000
).
23.
A. H.
Kara
and
F. M.
Mahomed
, “
A basis of conservation laws for partial differential equations
,”
J. Nonlinear Math. Phys.
9
(
Suppl. 2
),
60
72
(
2002
).
24.
A.
Sjöberg
, “
Double reduction of PDEs from the association of symmetries with conservation laws with applications
,”
Appl. Math. Comput.
184
(
2
),
608
616
(
2007
).
25.
R.
Naz
,
D. P.
Mason
, and
F. M.
Mahomed
, “
Conservation laws and conserved quantities for laminar two-dimensional and radial jets
,”
Nonlinear Anal.: Real World Appl.
10
(
5
),
2641
2651
(
2009
).
26.
D. P.
Mason
, “
Group invariant solution and conservation law for a free laminar two-dimensional jet
,”
J. Nonlinear Math. Phys.
9
(
Suppl. 2
),
92
101
(
2002
).
27.
I.
Ruscic
and
D. P.
Mason
, “
Group invariant solution and conservation law for a steady laminar axisymmetric free jet
,”
Quaest. Math.
27
(
2
),
171
183
(
2004
).
28.
L. N.
Kokela
,
D. P.
Mason
, and
A. J.
Hutchinson
, “
Conservation laws and conserved quantities for the two-dimensional laminar wake
,”
Int. J. Mod. Phys. B
30
,
1640014
(
2016
).
29.
D. P.
Mason
and
D. L.
Hill
, “
Group invariant solution for a two-dimensional turbulent free jet described by eddy viscosity
,”
J. Nonlinear Math. Phys.
15
(
Suppl. 1
),
134
148
(
2008
).
30.
D. P.
Mason
and
D. L.
Hill
, “
Invariant solution for an axisymmetric turbulent free jet using a conserved vector
,”
Commun. Nonlinear Sci. Numer. Simul.
18
(
7
),
1607
1622
(
2013
).
31.
G.
Unal
, “
Application of equivalence transformations to inertial subrange of turbulence
,”
Lie Groups Appl.
1
(
1
),
232
240
(
1994
).
32.
N. H.
Ibragimov
and
G.
Unal
, “
Lie groups in turbulence
,”
Lie Groups Appl.
1
(
2
),
98
103
(
1994
).
33.
M.
Oberlack
, “
A unified approach for symmetries in plane parallel turbulent shear flows
,”
J. Fluid Mech.
427
,
299
328
(
2001
).
34.
G. W.
Bluman
and
S. C.
Anco
,
Symmetry and Integration Methods for Differential Equations
, Applied Mathematical Sciences Vol. 154 (
Springer-Verlag
,
New York
,
2002
).
35.
G. W.
Bluman
,
A. F.
Cheviakov
, and
S. C.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
, Applied Mathematical Sciences Vol. 168 (
Springer-Verlag
,
New York
,
2010
).
36.
G. W.
Bluman
and
J. D.
Cole
,
Similarity Methods for Differential Equations
, Applied Mathematical Sciences Vol. 13 (
Springer-Verlag
,
New York
,
1974
).
37.
S. C.
Anco
and
G. W.
Bluman
, “
Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications
,”
Eur. J. Appl. Math.
13
,
545
566
(
2002
).
38.
S. C.
Anco
and
G. W.
Bluman
, “
Direct construction method for conservation laws of partial differential equations Part II: General treatment
,”
Eur. J. Appl. Math.
13
,
567
585
(
2002
).
39.
P. J.
Olver
and
P.
Rosenau
, “
The construction of special solutions to partial differential equations
,”
Phys. Lett. A
114
(
3
),
107
112
(
1986
).
40.
P. J.
Olver
and
P.
Rosenau
, “
Group-invariant solutions of differential equations
,”
SIAM J. Appl. Math.
47
(
2
),
263
278
(
1987
).
41.
I. S.
Krasilshchik
and
A. M.
Vinogradov
,
Symmetries and Conservation Laws for Differential Equations of Mathematical Physics
, Translation of Mathematical Monographs (
American Mathematical Society
,
1999
).
42.
E.
Pucci
and
G.
Saccomandi
, “
On the weak symmetry groups of partial differential equations
,”
J. Math. Anal. Appl.
163
(
2
),
588
598
(
1992
).
43.
H.
Schlichting
,
Boundary-Layer Theory
, 6th ed. (
McGraw-Hill
,
New York
,
1968
).
44.
N. H.
Ibragimovm
and
R. L.
Anderson
, “
One-parameter transformation groups
,” in
CRC Handbook of Lie Group Analysis of Differential Equations, Symmetries, Exact Solutions and Conservation Laws
, edited by
N. H.
Ibragimov
(
CRC Press
,
Boca Raton
,
1994
), Vol. 1, pp.
7
14
.
You do not currently have access to this content.