The physical mechanisms responsible for flame curvature evolution of a methane-air premixed flame attached to a bluff-body burner have been investigated using a high-fidelity flame-resolved three-dimensional simulation database. The contributions to the mean curvature generation due to the fluid flow motion and due to a combination of flow and flame propagation induced strain rates have been analyzed in detail and dominant contributions in different zones (reactants, flame, and products) of the flame have been identified. The effect of fluid flow on the mean curvature evolution is important on the unburned gas side, whereas the flame propagation dominates the mean curvature evolution in the reaction region and toward the hot products. The statistical contributions of the mean curvature transport equation have been analyzed in terms of the iso-scalar surface geometry, characterized by the mean and Gauss curvatures. This information has subsequently been used to provide physical insights into the dominant mechanisms of curvature evolution for different flame topologies.

1.
P.
Pelcé
,
Dynamics of Curved Fronts
(
Academic Press, Inc.
,
1988
).
2.
G. H.
Markstein
, “
Experimental and theoretical studies of flame-front stability
,” in
Dynamics of Curved Fronts
, edited by
P.
Pelcé
(
Academic Press, Inc.
,
1988
), pp.
413
423
.
3.
P.
Clavin
and
G.
Joulin
, “
Premixed flames in large scale and high intensity turbulent flow
,”
J. Phys. Lett.
44
,
1
12
(
1983
).
4.
D. W.
Mikolaitis
, “
The interaction of flame curvature and stretch, part 1: The concave premixed flame
,”
Combust. Flame
57
,
25
31
(
1984
).
5.
D. W.
Mikolaitis
, “
The interaction of flame curvature and stretch, part 2: The concave premixed flame
,”
Combust. Flame
58
,
23
29
(
1984
).
6.
D.
Haworth
and
T.
Poinsot
, “
Numerical simulations of Lewis number effects in turbulent premixed flames
,”
J. Fluid Mech.
244
,
405
436
(
1992
).
7.
C.
Rutland
and
A.
Trouvé
, “
Direct simulations of premixed turbulent flames with nonunity Lewis numbers
,”
Combust. Flame
94
,
41
57
(
1993
).
8.
T.
Echekki
and
J. H.
Chen
, “
Unsteady strain rate and curvature effects in turbulent premixed methane-air flames
,”
Combust. Flame
106
,
184
202
(
1996
).
9.
B.
Renou
,
A.
Boukhalfa
,
D.
Puechberty
, and
M.
Trinité
, “
Effects of stretch on the local structure of freely propagating premixed low-turbulent flames with various Lewis numbers
,”
Symp. (Int.) Combust.
27
,
841
847
(
1998
).
10.
N.
Peters
,
P.
Terhoeven
,
J. H.
Chen
, and
T.
Echekki
, “
Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames
,”
Symp. (Int.) Combust.
27
,
833
839
(
1998
).
11.
T.
Echekki
and
J. H.
Chen
, “
Analysis of the contribution of curvature to premixed flame propagation
,”
Combust. Flame
118
,
308
311
(
1999
).
12.
J. H.
Chen
and
H. G.
Im
, “
Correlation of flame speed with stretch in turbulent premixed methane/air flames
,”
Symp. (Int.) Combust.
27
,
819
826
(
1998
).
13.
J. B.
Chen
and
H. G.
Im
, “
Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames
,”
Proc. Combust. Inst.
28
,
211
218
(
2000
).
14.
E. R.
Hawkes
and
J. H.
Chen
, “
Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames
,”
Combust. Flame
138
,
242
258
(
2004
).
15.
E. R.
Hawkes
and
J. H.
Chen
, “
Evaluation of models for flame stretch due to curvature in the thin reaction zones regime
,”
Proc. Combust. Inst.
30
,
647
655
(
2005
).
16.
N.
Chakraborty
and
S.
Cant
, “
Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration
,”
Combust. Flame
137
,
129
147
(
2004
).
17.
N.
Chakraborty
and
R.
Cant
, “
Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime
,”
Phys. Fluids
17
,
105105
(
2005
).
18.
N.
Chakraborty
and
R.
Cant
, “
Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime
,”
Phys. Fluids
17
,
065108
(
2005
).
19.
K.
Jenkins
,
M.
Klein
,
N.
Chakraborty
, and
R.
Cant
, “
Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reaction-zones regime
,”
Combust. Flame
145
,
415
434
(
2006
).
20.
M.
Klein
,
N.
Chakraborty
,
K.
Jenkins
, and
R.
Cant
, “
Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment
,”
Phys. Fluids
18
,
055102
(
2006
).
21.
V. R.
Savarianandam
and
C.
Lawn
, “
Burning velocity of premixed turbulent flames in the weakly wrinkled regime
,”
Combust. Flame
146
,
1
18
(
2006
).
22.
N.
Chakraborty
, “
Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones
,”
Phys. Fluids
19
,
105109
(
2007
).
23.
N.
Chakraborty
,
E.
Hawkes
,
J.
Chen
, and
R.
Cant
, “
The effects of strain rate and curvature on surface density function transport in turbulent premixed methane–air and hydrogen–air flames: A comparative study
,”
Combust. Flame
154
,
259
280
(
2008
).
24.
I.
Han
and
K. Y.
Huh
, “
Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion
,”
Combust. Flame
152
,
194
205
(
2008
).
25.
G.
Hartung
,
J.
Hult
,
R.
Balachandran
,
M.
Mackley
, and
C.
Kaminski
, “
Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH
,”
Appl. Phys. B
96
,
843
862
(
2009
).
26.
N.
Chakraborty
,
M.
Klein
, and
R.
Cant
, “
Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion
,”
J. Combust.
2011
,
473679
.
27.
N.
Chakraborty
,
G.
Hartung
,
M.
Katragadda
, and
C.
Kaminski
, “
Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data
,”
Combust. Flame
158
,
1372
1390
(
2011
).
28.
J.
Kerl
,
C.
Lawn
, and
F.
Beyrau
, “
Three-dimensional flame displacement speed and flame front curvature measurements using quad-plane PIV
,”
Combust. Flame
160
,
2757
2769
(
2013
).
29.
G. K.
Giannakopoulos
,
M.
Matalon
,
C.
Frouzakis
, and
A. G.
Tomboulides
, “
The curvature Markstein length and the definition of flame displacement speed for stationary spherical flames
,”
Proc. Combust. Inst.
35
,
737
743
(
2015
).
30.
A.
Marshall
,
J.
Lundrigan
,
P.
Venkateswaran
,
J.
Seitzman
, and
T.
Lieuwen
, “
Fuel effects on leading point curvature statistics of high hydrogen content fuels
,”
Proc. Combust. Inst.
35
,
1417
1424
(
2015
).
31.
A.
Aspden
,
J.
Bell
,
M.
Day
, and
F.
Egolfopoulos
, “
Turbulence-flame interactions in lean premixed dodecane flames
,”
Proc. Combust. Inst.
36
,
2005
2016
(
2017
).
32.
S.
Pope
, “
The evolution of surfaces in turbulence
,”
Int. J. Eng. Sci.
26
,
445
469
(
1988
).
33.
S. M.
Candel
and
T. J.
Poinsot
, “
Flame stretch and the balance equation for the flame area
,”
Combust. Sci. Technol.
70
,
1
15
(
1990
).
34.
L.
Vervisch
,
E.
Bidaux
,
K.
Bray
, and
W.
Kollmann
, “
Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches
,”
Phys. Fluids
7
,
2496
2503
(
1995
).
35.
N.
Chakraborty
and
M.
Klein
, “
Influence of Lewis number on the surface density function transport in the thin reaction zone regime for turbulent premixed flames
,”
Phys. Fluids
20
,
065102
(
2008
).
36.
N.
Chakraborty
and
M.
Klein
, “
Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zones regime
,”
Proc. Combust. Inst.
32
,
1435
1443
(
2009
).
37.
A.
Sandeep
,
F.
Proch
,
A. M.
Kempf
, and
N.
Chakraborty
, “
Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner
,”
Phys. Fluids
30
,
065101
(
2018
).
38.
S.
Girimaji
and
S.
Pope
, “
Propagating surfaces in isotropic turbulence
,”
J. Fluid Mech.
234
,
247
277
(
1992
).
39.
Y.
Gao
,
N.
Chakraborty
, and
N.
Swaminathan
, “
Local strain rate and curvature dependences of scalar dissipation rate transport in turbulent premixed flames: A direct numerical simulation analysis
,”
J. Combust.
2014
,
280671
.
40.
N.
Chakraborty
and
R.
Cant
, “
A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation
,”
Phys. Fluids
19
,
105101
(
2007
).
41.
N.
Chakraborty
and
R.
Cant
, “
Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation
,”
Proc. Combust. Inst.
32
,
1445
1453
(
2009
).
42.
Y.
Gao
,
N.
Chakraborty
, and
N.
Swaminathan
, “
Scalar dissipation rate transport and its modeling for large eddy simulations of turbulent premixed combustion
,”
Combust. Sci. Technol.
187
,
362
383
(
2015
).
43.
J.
Kwon
,
Y.
Park
, and
K. Y.
Huh
, “
Flamelet characteristics at the leading edge and through the flame brush of statistically steady incompressible turbulent premixed flames
,”
Combust. Flame
164
,
85
98
(
2016
).
44.
M.
Klein
,
N.
Chakraborty
, and
R.
Cant
, “
Effects of turbulence on self-sustained combustion in premixed flame kernels: A direct numerical simulation (DNS) study
,”
Flow, Turbul. Combust.
81
,
583
607
(
2008
).
45.
H. A.
Uranakara
,
S.
Chaudhuri
, and
K.
Lakshmisha
, “
On the extinction of igniting kernels in near-isotropic turbulence
,”
Proc. Combust. Inst.
36
,
1793
1800
(
2017
).
46.
P.
Clavin
and
F.
Williams
, “
Effect of Lewis number on propagation of wrinkled flames in turbulent flow
,” in , Progress in Astronautics and Aeronautics Vol. 76, edited by
J. R.
Bowen
,
R. I.
Soloukhin
,
N.
Manson
, and
A. K.
Oppenheim
(
AIAA
,
1981
), pp.
403
411
.
47.
G. I.
Sivashinsky
, “
Instabilities, pattern formation, and turbulence in flames
,”
Annu. Rev. Fluid Mech.
15
,
179
199
(
1983
).
48.
F.
Creta
,
R.
Lamioni
,
P. E.
Lapenna
, and
G.
Troiani
, “
Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation
,”
Phys. Rev. E
94
,
053102
(
2016
).
49.
I.
Shepherd
and
W. T.
Ashurst
, “
Flame front geometry in premixed turbulent flames
,”
Symp. (Int.) Combust.
24
,
485
491
(
1992
).
50.
W. T.
Ashurst
and
I.
Shepherd
, “
Flame front curvature distributions in a turbulent premixed flame zone
,”
Combust. Sci. Technol.
124
,
115
144
(
1997
).
51.
T.-W.
Lee
,
G.
North
, and
D.
Santavicca
, “
Curvature and orientation statistics of turbulent premixed flame fronts
,”
Combust. Sci. Technol.
84
,
121
132
(
1992
).
52.
T.-W.
Lee
,
G.
North
, and
D.
Santavicca
, “
Surface properties of turbulent premixed propane/air flames at various Lewis numbers
,”
Combust. Flame
93
,
445
456
(
1993
).
53.
S.
Gashi
,
J.
Hult
,
K. W.
Jenkins
,
N.
Chakraborty
,
S.
Cant
, and
C. F.
Kaminski
, “
Curvature and wrinkling of premixed flame kernels—Comparisons of OH PLIF and DNS data
,”
Proc. Combust. Inst.
30
,
809
817
(
2005
).
54.
F. T.
Yuen
and
Ö. L.
Gülder
, “
Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime
,”
Proc. Combust. Inst.
32
,
1747
1754
(
2009
).
55.
H.
Wang
,
E. R.
Hawkes
,
B.
Zhou
,
J. H.
Chen
,
Z.
Li
, and
M.
Aldén
, “
A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number
,”
Proc. Combust. Inst.
36
,
2045
2053
(
2017
).
56.
C.
Dopazo
,
J.
Martin
,
L.
Cifuentes
, and
J.
Hierro
, “
Strain, rotation and curvature of non-material propagating iso-scalar surfaces in homogeneous turbulence
,”
Flow, Turbul. Combust.
101
,
1
32
(
2018
).
57.
F.
Proch
,
P.
Domingo
,
L.
Vervisch
, and
A. M.
Kempf
, “
Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry
,”
Combust. Flame
180
,
321
339
(
2017
).
58.
M. S.
Sweeney
,
S.
Hochgreb
,
M. J.
Dunn
, and
R. S.
Barlow
, “
The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows
,”
Combust. Flame
159
,
2896
2911
(
2012
).
59.
M. S.
Sweeney
,
S.
Hochgreb
,
M. J.
Dunn
, and
R. S.
Barlow
, “
The structure of turbulent stratified and premixed methane/air flames II: Swirling flows
,”
Combust. Flame
159
,
2912
2929
(
2012
).
60.
R.
Zhou
,
S.
Balusamy
,
M. S.
Sweeney
,
R. S.
Barlow
, and
S.
Hochgreb
, “
Flow field measurements of a series of turbulent premixed and stratified methane/air flames
,”
Combust. Flame
160
,
2017
2028
(
2013
).
61.
M.
Euler
,
R.
Zhou
,
S.
Hochgreb
, and
A.
Dreizler
, “
Temperature measurements of the bluff body surface of a swirl burner using phosphor thermometry
,”
Combust. Flame
161
,
2842
2848
(
2014
).
62.
M. M.
Kamal
,
R.
Zhou
,
S.
Balusamy
, and
S.
Hochgreb
, “
Favre-and Reynolds-averaged velocity measurements: Interpreting PIV and LDA measurements in combustion
,”
Proc. Combust. Inst.
35
,
3803
3811
(
2015
).
63.
M. M.
Kamal
,
R. S.
Barlow
, and
S.
Hochgreb
, “
Conditional analysis of turbulent premixed and stratified flames on local equivalence ratio and progress of reaction
,”
Combust. Flame
162
,
3896
3913
(
2015
).
64.
C.
Dopazo
,
L.
Cifuentes
,
J.
Martin
, and
C.
Jimenez
, “
Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame
,”
Combust. Flame
162
,
1729
1736
(
2015
).
65.
C.
Dopazo
,
L.
Cifuentes
,
J.
Hierro
, and
J.
Martin
, “
Micro-scale mixing in turbulent constant density reacting flows and premixed combustion
,”
Flow, Turbul. Combust.
96
,
547
571
(
2016
).
66.
C.
Dopazo
and
L.
Cifuentes
, “
The physics of scalar gradients in turbulent premixed combustion and its relevance to modeling
,”
Combust. Sci. Technol.
188
,
1376
1397
(
2016
).
67.
C.
Dopazo
,
J.
Martin
, and
J.
Hierro
, “
Local geometry of iso-scalar surfaces
,”
Phys. Rev. E
76
,
056316
(
2007
).
68.
R.
Mercier
,
B.
Fiorina
,
F.
Proch
, and
A. M.
Kempf
, “
Numerical and modeling strategies for the simulation of the Cambridge stratified flame series
,” TSFP Digital Library Online,
2013
.
69.
R.
Mercier
,
T.
Schmitt
,
D.
Veynante
, and
B.
Fiorina
, “
The influence of combustion SGS submodels on the resolved flame propagation. Application to the LES of the Cambridge stratified flames
,”
Proc. Combust. Inst.
35
,
1259
1267
(
2015
).
70.
F.
Proch
and
A. M.
Kempf
, “
Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry
,”
Combust. Flame
161
,
2627
2646
(
2014
).
71.
B.
Fiorina
,
O.
Gicquel
,
L.
Vervisch
,
S.
Carpentier
, and
N.
Darabiha
, “
Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation
,”
Combust. Flame
140
,
147
160
(
2005
).
72.
P.-D.
Nguyen
,
L.
Vervisch
,
V.
Subramanian
, and
P.
Domingo
, “
Multidimensional flamelet-generated manifolds for partially premixed combustion
,”
Combust. Flame
157
,
43
61
(
2010
).
73.
J.
van Oijen
and
L.
de Goey
, “
Modelling of premixed laminar flames using flamelet-generated manifolds
,”
Combust. Sci. Technol.
161
,
113
137
(
2000
).
74.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
2000
).
75.
M.
Boger
,
D.
Veynante
,
H.
Boughanem
, and
A.
Trouvé
, “
Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion
,”
Symp. (Int.) Combust.
27
,
917
925
(
1998
).
76.
N.
Chakraborty
and
N.
Swaminathan
, “
Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight
,”
Phys. Fluids
19
,
045103
(
2007
).
77.
G.
Hartung
,
J.
Hult
,
C.
Kaminski
,
J.
Rogerson
, and
N.
Swaminathan
, “
Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion
,”
Phys. Fluids
20
,
035110
(
2008
).
78.
L.
Cifuentes
,
C.
Dopazo
,
J.
Martin
,
P.
Domingo
, and
L.
Vervisch
, “
Recent developments in PDF methods
,”
Proc. Combust. Inst.
35
,
1295
1303
(
2015
).
79.
C.
Dopazo
, “
Local volumetric dilatation rate and scalar geometries in a premixed methane–air turbulent jet flame
,” in
Turbulent Reacting Flows
(
Academic Press
,
London
,
1994
), pp.
375
474
.
You do not currently have access to this content.