We present the extension of an efficient and highly parallelisable framework for incompressible fluid flow simulations to viscoplastic fluids. The system is governed by incompressible conservation of mass, the Cauchy momentum equation, and a generalised Newtonian constitutive law. In order to simulate a wide range of viscoplastic fluids, we employ the Herschel-Bulkley model for yield-stress fluids with nonlinear stress-strain dependency above the yield limit. We utilise Papanastasiou regularisation in our algorithm to deal with the singularity in apparent viscosity. The resulting system of partial differential equations is solved using the IAMR (Incompressible Adaptive Mesh Refinement) code, which uses second-order Godunov methodology for the advective terms and semi-implicit diffusion in the context of an approximate projection method to solve adaptively refined meshes. By augmenting the IAMR code with the ability to simulate regularised Herschel-Bulkley fluids, we obtain efficient numerical software for time-dependent viscoplastic flow in three dimensions, which can be used to investigate systems not considered previously due to computational expense. We validate results from simulations using this new capability against previously published data for Bingham plastics and power-law fluids in the two-dimensional lid-driven cavity. In doing so, we expand the range of Bingham and Reynolds numbers which have been considered in the benchmark tests. Moreover, extensions to time-dependent flow of Herschel-Bulkley fluids and three spatial dimensions offer new insights into the flow of viscoplastic fluids in this test case, and we provide missing benchmark results for these extensions.

1.
S. S.
Pegler
and
N. J.
Balmforth
, “
Locomotion over a viscoplastic film
,”
J. Fluid Mech.
727
,
1
29
(
2013
).
2.
M. W.
Denny
, “
A quantitative model for the adhesive locomotion of the terrestrial slug, ariolimax columbianus
,”
J. Exp. Biol.
91
,
195
217
(
1981
).
3.
A. J.
Apostolidis
and
A. N.
Beris
, “
Modeling of the blood rheology in steady-state shear flows
,”
J. Rheol.
58
,
607
633
(
2014
).
4.
A. J.
Apostolidis
,
M. J.
Armstrong
, and
A. N.
Beris
, “
Modeling of human blood rheology in transient shear flows
,”
J. Rheol.
59
,
275
298
(
2015
).
5.
A. J.
Apostolidis
and
A. N.
Beris
, “
The effect of cholesterol and triglycerides on the steady state shear rheology of blood
,”
Rheol. Acta
55
,
497
509
(
2016
).
6.
A. J.
Apostolidis
,
A. P.
Moyer
, and
A. N.
Beris
, “
Non-Newtonian effects in simulations of coronary arterial blood flow
,”
J. Non-Newtonian Fluid Mech.
233
,
155
165
(
2016
).
7.
S.
Bittleston
and
D.
Guillot
, “
Mud removal: Research improves traditional cementing guidelines
,”
Oilfield Rev.
3
,
44
54
(
1991
).
8.
S.
Taghavi
,
K.
Alba
,
M.
Moyers-Gonzalez
, and
I.
Frigaard
, “
Incomplete fluid–fluid displacement of yield stress fluids in near-horizontal pipes: Experiments and theory
,”
J. Non-Newtonian Fluid Mech.
167
,
59
74
(
2012
).
9.
I. A.
Frigaard
,
K. G.
Paso
, and
P. R.
de Souza Mendes
, “
Bingham’s model in the oil and gas industry
,”
Rheol. Acta
56
,
259
282
(
2017
).
10.
P.
Saramito
and
A.
Wachs
, “
Progress in numerical simulation of yield stress fluid flows
,”
Rheol. Acta
56
,
211
230
(
2017
).
11.
M.
Bercovier
and
M.
Engelman
, “
A finite-element method for incompressible non-Newtonian flows
,”
J. Comput. Phys.
36
,
313
326
(
1980
).
12.
R.
Tanner
and
J.
Milthorpe
, “
Numerical simulation of the flow of fluids with yield stress
,” in
Proceedings of Third International Conference on Numerical Methods in Laminar and Turbulent Flow
, edited by
C.
Taylor
,
C.
Johnson
, and
I.
Smith
(
Pineridge Press
,
Swansea, UK
,
1983
), pp.
680
690
.
13.
A.
Guha
and
S.
Sengupta
, “
Analysis of von Kármáns swirling flow on a rotating disc in Bingham fluids
,”
Phys. Fluids
28
,
013601
(
2016
).
14.
T. C.
Papanastasiou
, “
Flows of materials with yield
,”
J. Rheol.
31
,
385
404
(
1987
).
15.
E.
Mitsoulis
and
T.
Zisis
, “
Flow of Bingham plastics in a lid-driven square cavity
,”
J. Non-Newtonian Fluid Mech.
101
,
173
180
(
2001
).
16.
T.
Zisis
and
E.
Mitsoulis
, “
Viscoplastic flow around a cylinder kept between parallel plates
,”
J. Non-Newtonian Fluid Mech.
105
,
1
20
(
2002
).
17.
E.
Mitsoulis
, “
On creeping drag flow of a viscoplastic fluid past a circular cylinder: Wall effects
,”
Chem. Eng. Sci.
59
,
789
800
(
2004
).
18.
E.
Mitsoulis
and
J.
Tsamopoulos
, “
Numerical simulations of complex yield-stress fluid flows
,”
Rheol. Acta
56
,
231
258
(
2017
).
19.
A.
Syrakos
,
G. C.
Georgiou
, and
A. N.
Alexandrou
, “
Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method
,”
J. Non-Newtonian Fluid Mech.
195
,
19
31
(
2013
).
20.
A.
Syrakos
,
G. C.
Georgiou
, and
A. N.
Alexandrou
, “
Performance of the finite volume method in solving regularised Bingham flows: Inertia effects in the lid-driven cavity flow
,”
J. Non-Newtonian Fluid Mech.
208
,
88
107
(
2014
).
21.
A.
Syrakos
,
G. C.
Georgiou
, and
A. N.
Alexandrou
, “
Cessation of the lid-driven cavity flow of Newtonian and Bingham fluids
,”
Rheol. Acta
55
,
51
66
(
2016
).
22.
M.
Fortin
and
R.
Glowinski
, “
On decomposition-coordination methods using an augmented Lagrangian
,” in
Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems
, Studies in Mathematics and Its Applications, edited by
M.
Fortin
and
R.
Glowinski
(
Elsevier
,
1983
), Chap. III, Vol. 15, pp.
97
146
.
23.
G.
Duvaut
and
J. L.
Lions
,
Inequalities in Mechanics and Physics
(
Springer
,
1976
).
24.
M. R.
Hestenes
, “
Multiplier and gradient methods
,”
J. Optim. Theory Appl.
4
,
303
320
(
1969
).
25.
P.
Saramito
and
N.
Roquet
, “
An adaptive finite element method for viscoplastic fluid flows in pipes
,”
Comput. Methods Appl. Mech. Eng.
190
,
5391
5412
(
2001
).
26.
D.
Vola
,
L.
Boscardin
, and
J.
Latché
, “
Laminar unsteady flows of Bingham fluids: A numerical strategy and some benchmark results
,”
J. Comput. Phys.
187
,
441
456
(
2003
).
27.
T.
Treskatis
,
M. A.
Moyers-Gonzalez
, and
C. J.
Price
, “
An accelerated dual proximal gradient method for applications in viscoplasticity
,”
J. Non-Newtonian Fluid Mech.
238
,
115
130
(
2016
).
28.
P.
Saramito
, “
A damped Newton algorithm for computing viscoplastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
238
,
6
15
(
2016
).
29.
J.
Bleyer
, “
Advances in the simulation of viscoplastic fluid flows using interior-point methods
,”
Comput. Methods Appl. Mech. Eng.
330
,
368
394
(
2018
).
30.
Y.
Dimakopoulos
,
G.
Makrigiorgos
,
G.
Georgiou
, and
J.
Tsamopoulos
, “
The PAL (penalized augmented Lagrangian) method for computing viscoplastic flows: A new fast converging scheme
,”
J. Non-Newtonian Fluid Mech.
256
,
23
41
(
2018
).
31.
S.
Enayatpour
and
E.
van Oort
, “
Advanced modeling of cement displacement complexities
,” in
SPE/IADC Drilling Conference and Exhibition
(
Society of Petroleum Engineers
,
2017
).
32.
P.
Tardy
,
N.
Flamant
,
E.
Lac
,
A.
Parry
,
C.
Sutama
,
S.
Almagro
 et al, “
New generation 3D simulator predicts realistic mud displacement in highly deviated and horizontal wells
,” in
SPE/IADC Drilling Conference and Exhibition
(
Society of Petroleum Engineers
,
2017
).
33.
M.
Alnæs
,
J.
Blechta
,
J.
Hake
,
A.
Johansson
,
B.
Kehlet
,
A.
Logg
,
C.
Richardson
,
J.
Ring
,
M. E.
Rognes
, and
G. N.
Wells
, “
The FEniCS project version 1.5
,”
Arch. Numer. Software
3
,
9
23
(
2015
).
34.
H.
Jasak
,
A.
Jemcov
,
Z.
Tukovic
 et al, “
OpenFOAM: A C++ library for complex physics simulations
,” in
International Workshop on Coupled Methods in Numerical Dynamics
(
IUC
,
Dubrovnik, Croatia
,
2007
), Vol. 1000, pp.
1
20
.
35.
A.
Almgren
,
J.
Bell
,
P.
Colella
,
L.
Howell
, and
M.
Welcome
, “
A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations
,”
J. Comput. Phys.
142
,
1
46
(
1998
).
36.
H. A.
Barnes
, “
The yield stress—A review or παντα ρει—Everything flows?
,”
J. Non-Newtonian Fluid Mech.
81
,
133
178
(
1999
).
37.
N. J.
Balmforth
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
38.
E. C.
Bingham
, “
An investigation of the laws of plastic flow
,”
Bull. Bur. Stand.
13
,
309
353
(
1916
).
39.
J.
Oldroyd
, “
A rational formulation of the equations of plastic flow for a Bingham solid
,” in
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1947
), Vol. 43, pp.
100
105
.
40.
W. H.
Herschel
and
R.
Bulkley
, “
Konsistenzmessungen von Gummi-Benzollösungen
,”
Kolloid-Z.
39
,
291
300
(
1926
).
41.
R. B.
Pember
,
L. H.
Howell
,
J. B.
Bell
,
P.
Colella
,
W. Y.
Crutchfield
,
W.
Fiveland
, and
J.
Jessee
, “
An adaptive projection method for unsteady, low-mach number combustion
,”
Combust. Sci. Technol.
140
,
123
168
(
1998
).
42.
M. S.
Day
and
J. B.
Bell
, “
Numerical simulation of laminar reacting flows with complex chemistry
,”
Combust. Theory Modell.
4
,
535
556
(
2000
).
43.
M.
Lai
,
J.
Bell
, and
P.
Colella
, “
A projection method for combustion in the zero Mach number limit
,” in
11th Computational Fluid Dynamics Conference
(
American Institute of Aeronautics and Astronautics, Inc.
,
1993
), p.
3369
.
44.
A. S.
Almgren
,
J. B.
Bell
, and
W. G.
Szymczak
, “
A numerical method for the incompressible Navier-Stokes equations based on an approximate projection
,”
SIAM J. Sci. Comput.
17
,
358
369
(
1996
).
45.
D. F.
Martin
and
P.
Colella
, “
A cell-centered adaptive projection method for the incompressible Euler equations
,”
J. Comput. Phys.
163
,
271
312
(
2000
).
46.
P.
Colella
, “
A direct Eulerian MUSCL scheme for gas dynamics
,”
SIAM J. Sci. Stat. Comput.
6
,
104
117
(
1985
).
47.
S.
Mirzaagha
,
R.
Pasquino
,
E.
Iuliano
,
G.
D’Avino
,
F.
Zonfrilli
,
V.
Guida
, and
N.
Grizzuti
, “
The rising motion of spheres in structured fluids with yield stress
,”
Phys. Fluids
29
,
093101
(
2017
).
48.
A.
Almgren
,
V.
Beckner
,
J.
Bell
,
M.
Day
,
L.
Howell
,
C.
Joggerst
,
M.
Lijewski
,
A.
Nonaka
,
M.
Singer
, and
M.
Zingale
, “
CASTRO: A new compressible astrophysical solver. I. Hydrodynamics and self-gravity
,”
Astrophys. J.
715
,
1221
(
2010
).
49.
A. S.
Almgren
,
J. B.
Bell
,
M. J.
Lijewski
,
Z.
Lukić
, and
E.
Van Andel
, “
Nyx: A massively parallel AMR code for computational cosmology
,”
Astrophys. J.
765
,
39
(
2013
).
50.
A.
Dubey
,
A.
Almgren
,
J.
Bell
,
M.
Berzins
,
S.
Brandt
,
G.
Bryan
,
P.
Colella
,
D.
Graves
,
M.
Lijewski
,
F.
Löffler
,
B.
O’Shea
,
E.
Schnetter
,
B.
Van Straalen
, and
K.
Weide
, “
A survey of high level frameworks in block-structured adaptive mesh refinement packages
,”
J. Parallel Distrib. Comput.
74
,
3217
3227
(
2014
).
51.
S.
Habib
,
A.
Pope
,
H.
Finkel
,
N.
Frontiere
,
K.
Heitmann
,
D.
Daniel
,
P.
Fasel
,
V.
Morozov
,
G.
Zagaris
,
T.
Peterka
,
V.
Vishwanath
,
Z.
Lukić
,
S.
Sehrish
, and
W.-k.
Liao
, “
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
,”
New Astron.
42
,
49
65
(
2016
).
52.
B. C.
Bell
and
K. S.
Surana
, “
p-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow
,”
Int. J. Numer. Methods Fluids
18
,
127
162
(
1994
).
53.
P.
Neofytou
, “
A 3rd order upwind finite volume method for generalised Newtonian fluid flows
,”
Adv. Eng. Software
36
,
664
680
(
2005
).
54.
U.
Ghia
,
K. N.
Ghia
, and
C.
Shin
, “
High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
411
(
1982
).
55.
Z.
Chai
,
B.
Shi
,
Z.
Guo
, and
F.
Rong
, “
Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows
,”
J. Non-Newtonian Fluid Mech.
166
,
332
342
(
2011
).
56.
P. R.
de Souza Mendes
, “
Dimensionless non-Newtonian fluid mechanics
,”
J. Non-Newtonian Fluid Mech.
147
,
109
116
(
2007
).
57.
R. L.
Thompson
and
E. J.
Soares
, “
Viscoplastic dimensionless numbers
,”
J. Non-Newtonian Fluid Mech.
238
,
57
64
(
2016
).
58.
E. J.
Dean
,
R.
Glowinski
, and
G.
Guidoboni
, “
On the numerical simulation of Bingham visco-plastic flow: Old and new results
,”
J. Non-Newtonian Fluid Mech.
142
,
36
62
(
2007
).
59.
L.
Muravleva
, “
Uzawa-like methods for numerical modeling of unsteady viscoplastic Bingham medium flows
,”
Appl. Numer. Math.
93
,
140
149
(
2015
).
60.
Y.
Dimakopoulos
and
J.
Tsamopoulos
, “
Transient displacement of a viscoplastic material by air in straight and suddenly constricted tubes
,”
J. Non-Newtonian Fluid Mech.
112
,
43
75
(
2003
).
61.
M. A.
Olshanskii
, “
Analysis of semi-staggered finite-difference method with application to Bingham flows
,”
Comput. Methods Appl. Mech. Eng.
198
,
975
985
(
2009
).
62.
R. N.
Elias
,
M. A.
Martins
, and
A. L.
Coutinho
, “
Parallel edge-based solution of viscoplastic flows with the SUPG/PSPG formulation
,”
Comput. Mech.
38
,
365
381
(
2006
).
63.
K.
Moreland
and
R.
Oldfield
, “
Formal metrics for large-scale parallel performance
,” in
International Conference on High Performance Computing
(
Springer
,
2015
), pp.
488
496
.
64.
B. T.
Liu
,
S. J.
Muller
, and
M. M.
Denn
, “
Interactions of two rigid spheres translating collinearly in creeping flow in a Bingham material
,”
J. Non-Newtonian Fluid Mech.
113
,
49
67
(
2003
).
You do not currently have access to this content.