The effect of hawkmoth-like flexibility on the aerodynamic hovering performance of wings at a Reynolds number of 400 has been assessed by conducting fluid structure interaction simulations incorporating a finite difference based immersed boundary method coupled with a finite-element based structure solver. The stiffness distribution of a hawkmoth forewing was mapped onto three wing shapes (r¯1 = 0.43, 0.53, and 0.63) defined by the radius of the first moment of wing area each with aspect ratios, AR = 1.5, 2.96, 4.5, and 6.0 using elliptic mesh generation, the Jacobi method for iterations, and the concept of the barycentric coordinate system. The results show that there is a dominant chordwise deformation at AR = 1.5, and the wings also deform in the spanwise direction and their tips deviate from the horizontal stroke plane as AR increases. At AR = 1.5, 2.96, and 4.5, flexibility increases the mean lift (up to 39%, 18%, and 17.6%, respectively) for all wing shapes. At AR = 6.0, the r1¯ = 0.53 and 0.63 flexible wings give lesser lift than the rigid equivalents because of negative lift or small positive lift during the early stroke as the vortical structures remain on the bottom surface. This is attributed to the rapid pitch-down rotation, lesser stroke angular velocity than the rigid wing, and upward motion of the wingtip, away from the horizontal stroke plane. From the design perspective, the anisotropic flexible wings (except r1¯ = 0.53 and 0.63 with AR = 6.0) can be used in micro aerial vehicles for high lift requirements, such as for a high payload. Results here show that in nature, the hawkmoth wings with r1¯ and AR of 0.43-0.44 and 2.73-2.92, respectively, appear to have a combination of the shape, AR, and flexibility that optimizes power economy.

1.
J. M.
McMichael
and
M. S.
Francis
, “
Micro air vehicles-toward a new dimension in flight
,” DARPA document (
1997
), pp.
1
9
.
2.
S. H.
Lee
and
D.
Kim
, “
Aerodynamics of a translating comb-like plate inspired by a fairyfly wing
,”
Phys. Fluids
29
,
081902
(
2017
).
3.
U.
Pesavento
and
Z. J.
Wang
, “
Flapping wing flight can save aerodynamic power compared to steady flight
,”
Phys. Rev. Lett.
103
,
118102
(
2009
).
4.
M.
Ramasamy
,
J. G.
Leishman
, and
T. E.
Lee
, “
Flowfield of a rotating-wing micro air vehicle
,”
J. Aircr.
44
,
1236
1244
(
2007
).
5.
D.
Kolomenskiy
,
H. K.
Moffatt
,
M.
Farge
, and
K.
Schneider
, “
Vorticity generation during the clap–fling–sweep of some hovering insects
,”
Theor. Comput. Fluid Dyn.
24
,
209
215
(
2010
).
6.
M.
Lighthill
, “
On the Weis-Fogh mechanism of lift generation
,”
J. Fluid Mech.
60
,
1
17
(
1973
).
7.
L. A.
Miller
and
C. S.
Peskin
, “
A computational fluid dynamics of clap and fling in the smallest insects
,”
J. Exp. Biol.
208
,
195
212
(
2005
).
8.
X.
Su
,
Y.
Cao
, and
Y.
Zhao
, “
An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics
,”
Phys. Fluids
28
,
061901
(
2016
).
9.
T.
Weis-Fogh
, “
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
,”
J. Exp. Biol.
59
,
169
230
(
1973
).
10.
J. M.
Birch
,
W. B.
Dickson
, and
M. H.
Dickinson
, “
Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers
,”
J. Exp. Biol.
207
,
1063
1072
(
2004
).
11.
C. P.
Ellington
,
C.
Van Den Berg
,
A. P.
Willmott
, and
A. L.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
,
626
630
(
1996
).
12.
J. R.
Usherwood
and
C. P.
Ellington
, “
The aerodynamics of revolving wings I. Model hawkmoth wings
,”
J. Exp. Biol.
205
,
1547
1564
(
2002
).
13.
M. H.
Dickinson
,
F.-O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
,
1954
1960
(
1999
).
14.
J. M.
Birch
and
M. H.
Dickinson
, “
The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight
,”
J. Exp. Biol.
206
,
2257
2272
(
2003
).
15.
K.
Lua
,
H.
Lu
,
X.
Zhang
,
T.
Lim
, and
K.
Yeo
, “
Aerodynamics of two-dimensional flapping wings in tandem configuration
,”
Phys. Fluids
28
,
121901
(
2016
).
16.
Z. J.
Wang
, “
Dissecting insect flight
,”
Annu. Rev. Fluid Mech.
37
,
183
210
(
2005
).
17.
A.
DeVoria
,
P.
Mahajan
, and
M. J.
Ringuette
, “
Vortex formation and saturation for low-aspect-ratio rotating flat plates at low Reynolds number
,” AIAA Paper 2011-396,
2011
.
18.
J.
Fu
,
C.
Hefler
,
H.
Qiu
, and
W.
Shyy
, “
Effects of aspect ratio on flapping wing aerodynamics in animal flight
,”
Acta Mech. Sin.
30
,
776
786
(
2014
).
19.
R.
Harbig
,
J.
Sheridan
, and
M.
Thompson
, “
Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms
,”
J. Fluid Mech.
717
,
166
192
(
2013
).
20.
J. W.
Kruyt
,
E. M.
Quicazán-Rubio
,
G. F.
van Heijst
,
D. L.
Altshuler
, and
D.
Lentink
, “
Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors
,”
J. R. Soc., Interface
11
,
20140585
(
2014
).
21.
C.
Li
and
H.
Dong
, “
Wake structure and aerodynamic performance of low aspect-ratio revolving plates at low Reynolds number
,” AIAA Paper 2014-1453,
2014
.
22.
C.
Ozen
and
D.
Rockwell
, “
Flow structure on a rotating wing: Effect of wing aspect ratio and shape
,” AIAA Paper 2013-0676,
2013
.
23.
A.
Shahzad
,
F.-B.
Tian
,
J.
Young
, and
J. C. S.
Lai
, “
Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover
,”
Phys. Fluids
28
,
111901
(
2016
).
24.
J.
Deng
,
L.
Sun
,
L.
Teng
,
D.
Pan
, and
X.
Shao
, “
The correlation between wake transition and propulsive efficiency of a flapping foil: A numerical study
,”
Phys. Fluids
28
,
094101
(
2016
).
25.
R.
Noda
,
T.
Nakata
, and
H.
Liu
, “
Effects of wing deformation on aerodynamic performance of a revolving insect wing
,”
Acta Mech. Sin.
30
,
819
827
(
2014
).
26.
F.
Paraz
,
L.
Schouveiler
, and
C.
Eloy
, “
Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality
,”
Phys. Fluids
28
,
011903
(
2016
).
27.
A. T.
Shahzad
,
F.-B.
Tian
,
J.
Young
, and
J. C. S.
Lai
, “
Numerical study of rigid and flexible wing shapes in hover
,”
J. Phys.: Conf. Ser.
822
,
012007
(
2017
).
28.
L.
Zhao
,
Q.
Huang
,
X.
Deng
, and
S. P.
Sane
, “
Aerodynamic effects of flexibility in flapping wings
,”
J. R. Soc., Interface
7
,
485
497
(
2010
).
29.
T.
Nakata
and
H.
Liu
, “
Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach
,”
Proc. R. Soc. B
279
,
722
731
(
2011
).
30.
A.
Shahzad
,
F.
Tian
,
J.
Young
, and
J.
Lai
, “
Aerodynamic hovering performance of rigid and flexible wing planform shapes
,” in
20th Australasian Fluid Mechanics Conference
,
Perth, Australia
,
2016
.
31.
H.
Tanaka
,
J. P.
Whitney
,
R. J.
Wood
,
H.
Tanaka
,
J. P.
Whitney
, and
R. J.
Wood
, “
Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight
,”
Integr. Comp. Biol.
51
,
142
150
(
2011
).
32.
L.
Wang
and
R. W.
Yeung
, “
Investigation of full and partial ground effects on a flapping foil hovering above a finite-sized platform
,”
Phys. Fluids
28
,
071902
(
2016
).
33.
G.
Xu
,
W.
Duan
, and
W.
Xu
, “
The propulsion of two flapping foils with tandem configuration and vortex interactions
,”
Phys. Fluids
29
,
097102
(
2017
).
34.
M.
Hamamoto
,
Y.
Ohta
,
K.
Hara
, and
T.
Hisada
, “
Application of fluid–structure interaction analysis to flapping flight of insects with deformable wings
,”
Adv. Rob.
21
,
1
21
(
2007
).
35.
R. J.
Wootton
, “
The mechanical design of insect wings
,”
Sci. Am.
263
(
5
),
114
121
(
1990
).
36.
R.
Herbert
,
P.
Young
,
C.
Smith
,
R.
Wootton
, and
K.
Evans
, “
The hind wing of the desert locust (Schistocerca gregaria Forskal). III. A finite element analysis of a deployable structure
,”
J. Exp. Biol.
203
,
2945
2955
(
2000
).
37.
R. J.
Wootton
, “
Geometry and mechanics of insect hindwing fans: A modelling approach
,”
Proc. R. Soc. B
262
,
181
187
(
1995
).
38.
D.
Newman
and
R.
Wootton
, “
An approach to the mechanics of pleating in dragonfly wings
,”
J. Exp. Biol.
125
,
361
372
(
1986
).
39.
R. J.
Wootton
, “
Support and deformability in insect wings
,”
J. Zool.
193
,
447
468
(
1981
).
40.
G.
Du
and
M.
Sun
, “
Effects of wing deformation on aerodynamic forces in hovering hoverflies
,”
J. Exp. Biol.
213
,
2273
2283
(
2010
).
41.
S. M.
Walker
,
A. L.
Thomas
, and
G. K.
Taylor
, “
Deformable wing kinematics in free-flying hoverflies
,”
J. R. Soc., Interface
7
,
131
142
(
2010
).
42.
H.
Tanaka
,
H.
Okada
,
Y.
Shimasue
, and
H.
Liu
, “
Flexible flapping wings with self-organized microwrinkles
,”
Bioinspiration Biomimetics
10
,
046005
(
2015
).
43.
V.
Naidu
,
J.
Young
, and
J. C. S.
Lai
, “
Effect of wing flexibility on dragonfly hover flight
,” in
19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8–11 December 2014
(
Australasian Fluid Mechanics Society
,
2014
), pp.
1
4
.
44.
Y.
Zheng
,
Y.
Wu
, and
H.
Tang
, “
Force measurements of flexible tandem wings in hovering and forward flights
,”
Bioinspiration Biomimetics
10
,
016021
(
2015
).
45.
A.
Agrawal
and
S. K.
Agrawal
, “
Design of bio-inspired flexible wings for flapping-wing micro-sized air vehicle applications
,”
Adv. Rob.
23
,
979
1002
(
2009
).
46.
S.
Combes
and
T.
Daniel
, “
Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending
,”
J. Exp. Biol.
206
,
2989
2997
(
2003
).
47.
A.
Shahzad
,
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios
,”
J. Fluids Struct.
81
,
69
96
(
2018
).
48.
H.-B.
Deng
,
Y.-Q.
Xu
,
D.-D.
Chen
,
H.
Dai
,
J.
Wu
, and
F.-B.
Tian
, “
On numerical modeling of animal swimming and flight
,”
Comput. Mech.
52
,
1221
1242
(
2013
).
49.
T. Y.
Wu
, “
Fish swimming and bird/insect flight
,”
Annu. Rev. Fluid Mech.
43
,
25
58
(
2011
).
50.
S. G.
Park
,
B.
Kim
, and
H. J.
Sung
, “
Hydrodynamics of a self-propelled flexible fin near the ground
,”
Phys. Fluids
29
,
051902
(
2017
).
51.
H.
Luo
,
H.
Dai
,
P. J. F.
de Sousa
, and
B.
Yin
, “
On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries
,”
Comput. Fluids
56
,
61
76
(
2012
).
52.
A. J.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
762
(
1968
).
53.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
F.
Najjar
,
A.
Vargas
, and
A.
von Loebbecke
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
,
4825
4852
(
2008
).
54.
F.-B.
Tian
,
H.
Dai
,
H.
Luo
,
J. F.
Doyle
, and
B.
Rousseau
, “
Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems
,”
J. Comput. Phys.
258
,
451
469
(
2014
).
55.
H.
Dai
, “
Computational modeling of fluid–structure interaction in biological flying and swimming
,” Ph.D. thesis,
Vanderbilt University
,
2013
.
56.
F.
Tian
,
X.
Lu
, and
H.
Luo
, “
Onset of instability of a flag in uniform flow
,”
Theor. Appl. Mech. Lett.
2
,
022005
(
2012
).
57.
F.-B.
Tian
,
H.
Luo
,
J.
Song
, and
X.-Y.
Lu
, “
Force production and asymmetric deformation of a flexible flapping wing in forward flight
,”
J. Fluids Struct.
36
,
149
161
(
2013
).
58.
F.-B.
Tian
,
J.
Young
, and
J. C.
Lai
, “
Improving power-extraction efficiency of a flapping plate: From passive deformation to active control
,”
J. Fluids Struct.
51
,
384
392
(
2014
).
59.
J.
Tang
,
D.
Viieru
, and
W.
Shyy
, “
Effects of Reynolds number and flapping kinematics on hovering aerodynamics
,”
AIAA J.
46
,
967
976
(
2008
).
60.
J.
Doyle
, QED: static, dynamic, stability, and nonlinear analysis of solids and structures: Software manual, version 4.60, ikayex software tools,
2008
.
61.
J. L.
Batoz
,
K. J.
Bathe
, and
L. W.
Ho
, “
A study of three-node triangular plate bending elements
,”
Int. J. Numer. Methods Eng.
15
,
1771
1812
(
1980
).
62.
T.
Belytschko
and
B.
Hsieh
, “
Non-linear transient finite element analysis with convected co-ordinates
,”
Int. J. Numer. Methods Eng.
7
,
255
271
(
1973
).
63.
T.
Belytschko
,
L.
Schwer
, and
M.
Klein
, “
Large displacement, transient analysis of space frames
,”
Int. J. Numer. Methods Eng.
11
,
65
84
(
1977
).
64.
J. F.
Doyle
,
Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability
(
Springer-Verlag
,
New York, USA
,
2001
).
65.
J. F.
Doyle
,
Static and Dynamic Analysis of Structures
(
Kluwer
,
Dordrecht, The Netherlands
,
1991
).
66.
T. E.
Tezduyar
,
S.
Sathe
,
R.
Keedy
, and
K.
Stein
, “
Space–time finite element techniques for computation of fluid–structure interactions
,”
Comput. Methods Appl. Mech. Eng.
195
,
2002
2027
(
2006
).
67.
F.-B.
Tian
, “
FSI modeling with the DSD/SST method for the fluid and finite difference method for the structure
,”
Comput. Mech.
54
,
581
589
(
2014
).
68.
N.
Phillips
, “
Experimental unsteady aerodynamics relevant to insect-inspired flapping-wing micro air vehicles
,” Ph.D. thesis,
Cranfield University
,
2011
.
69.
C.
Ellington
, “
The aerodynamics of insect flight. II. Morphological parameters
,”
Philos. Trans. R. Soc., B
305
,
17
40
(
1984
).
70.
S. K.
Chimakurthi
, “
A computational aeroelasticity framework for analyzing flapping wings
,” Ph.D. thesis,
The University of Michigan
,
2009
.
71.
A.
Gogulapati
,
P. P.
Friedmann
,
E.
Kheng
, and
W.
Shyy
, “
Approximate aeroelastic modeling of flapping wings: Comparison with CFD and experimental data
,” AIAA Paper 2010-2707,
2010
.
72.
S.
Sunada
,
L.
Zeng
, and
K.
Kawachi
, “
The relationship between dragonfly wing structure and torsional deformation
,”
J. Theor. Biol.
193
,
39
45
(
1998
).
73.
W.
Shyy
,
H.
Aono
,
C.-K.
Kang
, and
H.
Liu
,
An Introduction to Flapping Wing Aerodynamics
(
Cambridge University Press
,
New York, USA
,
2013
).
74.
N.
San Ha
,
Q. T.
Truong
,
N. S.
Goo
, and
H. C.
Park
, “
Relationship between wingbeat frequency and resonant frequency of the wing in insects
,”
Bioinspiration Biomimetics
8
,
046008
(
2013
).
75.
L.
Zheng
,
T. L.
Hedrick
, and
R.
Mittal
, “
A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight
,”
J. Fluid Mech.
721
,
118
154
(
2013
).
76.
G.
Luo
and
M.
Sun
, “
The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings
,”
Acta Mech. Sin.
21
,
531
541
(
2005
).
77.
A. M.
Mountcastle
and
S. A.
Combes
, “
Wing flexibility enhances load-lifting capacity in bumblebees
,”
Proc. R. Soc. B
280
,
20130531
(
2013
).
78.
E. A.
Mistick
,
A. M.
Mountcastle
, and
S. A.
Combes
, “
Wing flexibility improves bumblebee flight stability
,”
J. Exp. Biol.
219
,
3384
3390
(
2016
).
79.
A. M.
Mountcastle
and
S. A.
Combes
, “
Biomechanical strategies for mitigating collision damage in insect wings: Structural design versus embedded elastic materials
,”
J. Exp. Biol.
217
,
1108
1115
(
2014
).

Supplementary Material

You do not currently have access to this content.