A robotic fish is used to test the validity of a simplification made in the context of fish locomotion. With this artificial aquatic swimmer, we verify that the momentum equation results from a simple balance between a thrust and a drag that can be treated independently in the small amplitude regime. The thrust produced by the flexible robot is proportional to A2f2, where A and f are the respective tail-beat amplitude and oscillation frequency, irrespective of whether or not f coincides with the resonant frequency of the fish. The drag is proportional to U02, where U0 is the swimming velocity. These three physical quantities set the value of the Strouhal number in this regime. For larger amplitudes, we found that the drag coefficient is not constant but increases quadratically with the fin amplitude. As a consequence, the achieved locomotion velocity decreases, or the Strouhal number increases, as a function of the fin amplitude.

1.
T.
Theodorsen
, “
General theory of aerodynamic instability and the mechanism of flutter
,” Report No. 496,
National Advisory Committee for Aeronautics
,
Washington, D.C.
,
1935
.
2.
I. E.
Garrick
, “
Propulsion of a flapping and oscillating airfoil
,” Report No. 567,
National Advisory Committee for Aeronautics
,
Washington, D.C.
,
1936
.
3.
M.
Koochesfahani
, “
Vortical patterns in the wake of an oscillating airfoil
,” in
25th AIAA Aerospace Sciences Meeting
(
AIAA
,
1987
).
4.
G.
Triantafyllou
,
M.
Triantafyllou
, and
M.
Grosenbaugh
, “
Optimal thrust development in oscillating foils with application to fish propulsion
,”
J. Fluids Struct.
7
(
2
),
205
224
(
1993
).
5.
L.
Schouveiler
,
F.
Hover
, and
M.
Triantafyllou
, “
Performance of flapping foil propulsion
,”
J. Fluids Struct.
20
(
7
),
949
959
(
2005
).
6.
J.
Anderson
,
K.
Streitlien
,
D.
Barrett
, and
M.
Triantafyllou
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
72
(
1998
).
7.
D. A.
Read
,
F.
Hover
, and
M.
Triantafyllou
, “
Forces on oscillating foils for propulsion and maneuvering
,”
J. Fluids Struct.
17
(
1
),
163
183
(
2003
).
8.
M. J.
Lighthill
, “
Note on the swimming of slender fish
,”
J. Fluid Mech.
9
(
2
),
305
317
(
1960
).
9.
M. J.
Lighthill
, “
Aquatic animal propulsion of high hydromechanical efficiency
,”
J. Fluid Mech.
44
(
2
),
265
301
(
1970
).
10.
K.
Moored
,
P.
Dewey
,
A.
Smits
, and
H.
Haj-Hariri
, “
Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion
,”
J. Fluid Mech.
708
,
329
348
(
2012
).
11.
P. A.
Dewey
,
B. M.
Boschitsch
,
K. W.
Moored
,
H. A.
Stone
, and
A. J.
Smits
, “
Scaling laws for the thrust production of flexible pitching panels
,”
J. Fluid Mech.
732
,
29
46
(
2013
).
12.
C.
Marais
,
B.
Thiria
,
J. E.
Wesfreid
, and
R.
Godoy-Diana
, “
Stabilizing effect of flexibility in the wake of a flapping foil
,”
J. Fluid Mech.
710
,
659
669
(
2012
).
13.
S.
Alben
,
C.
Witt
,
T. V.
Baker
,
E.
Anderson
, and
G. V.
Lauder
, “
Dynamics of freely swimming flexible foils
,”
Phys. Fluids
24
(
5
),
051901
(
2012
).
14.
D. B.
Quinn
,
G. V.
Lauder
, and
A. J.
Smits
, “
Scaling the propulsive performance of heaving flexible panels
,”
J. Fluid Mech.
738
,
250
267
(
2014
).
15.
F.
Paraz
,
C.
Eloy
, and
L.
Schouveiler
, “
Experimental study of the response of a flexible plate to a harmonic forcing in a flow
,”
C. R. Mec.
342
(
9
),
532
538
(
2014
).
16.
F.
Paraz
,
L.
Schouveiler
, and
C.
Eloy
, “
Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality
,”
Phys. Fluids
28
(
1
),
011903
(
2016
).
17.
C. J.
Esposito
,
J. L.
Tangorra
,
B. E.
Flammang
, and
G. V.
Lauder
, “
A robotic fish caudal fin: Effects of stiffness and motor program on locomotor performance
,”
J. Exp. Biol.
215
(
1
),
56
67
(
2012
).
18.
A. J.
Richards
and
P.
Oshkai
, “
Effect of the stiffness, inertia and oscillation kinematics on the thrust generation and efficiency of an oscillating-foil propulsion system
,”
J. Fluids Struct.
57
,
357
374
(
2015
).
19.
S. G.
Park
,
B.
Kim
, and
H. J.
Sung
, “
Hydrodynamics of a self-propelled flexible fin near the ground
,”
Phys. Fluids
29
(
5
),
051902
(
2017
).
20.
S.
Ramananarivo
,
R.
Godoy-Diana
, and
B.
Thiria
, “
Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
15
),
5964
5969
(
2011
).
21.
M.
Gazzola
,
M.
Argentina
, and
L.
Mahadevan
, “
Gait and speed selection in slender inertial swimmers
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
13
),
3874
3879
(
2015
).
22.
M.
Gazzola
,
M.
Argentina
, and
L.
Mahadevan
, “
Scaling macroscopic aquatic locomotion
,”
Nat. Phys.
10
(
10
),
758
(
2014
).
23.
M. S.
Triantafyllou
,
G. S.
Triantafyllou
, and
R.
Gopalkrishnan
, “
Wake mechanics for thrust generation in oscillating foils
,”
Phys. Fluids A
3
,
2835
2837
(
1991
).
24.
M. S.
Triantafyllou
,
G.
Triantafyllou
, and
D.
Yue
, “
Hydrodynamics of fishlike swimming
,”
Annu. Rev. Fluid. Mech.
32
(
1
),
33
53
(
2000
).
25.
G. K.
Taylor
,
R. L.
Nudds
, and
A. L.
Thomas
, “
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency
,”
Nature
425
(
6959
),
707
711
(
2003
).
26.
J. J.
Rohr
and
F. E.
Fish
, “
Strouhal numbers and optimization of swimming by odontocete cetaceans
,”
J. Exp. Biol.
207
,
1633
1642
(
2004
).
27.
M.
Saadat
,
F.
Fish
,
A.
Domel
,
V.
Di Santo
,
G.
Lauder
, and
H.
Haj-Hariri
, “
On the rules for aquatic locomotion
,”
Phys. Rev. Fluids
2
(
8
),
083102
(
2017
).
28.
R.
Bainbridge
, “
The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat
,”
J. Exp. Biol.
35
(
1
),
109
133
(
1958
).
29.
J. R.
Hunter
and
J. R.
Zweifel
, “
Swimming speed, tail beat frequency, tail beat amplitude, and size in Jack mackerel, Trachurus symmetricus, and other fishes
,”
Fish. Bull.
69
(
2
),
253
266
(
1971
).
30.
M. G.
Chopra
and
T.
Kambe
, “
Hydromechanics of lunate-tail swimming propulsion. Part 2
,”
J. Fluid Mech.
79
(
1
),
49
69
(
1977
).
31.
G.
Karpouzian
,
G.
Spedding
, and
H. K.
Cheng
, “
Lunate-tail swimming propulsion. Part 2. Performance analysis
,”
J. Fluid Mech.
210
,
329
351
(
1990
).
32.
H.
Dong
,
R.
Mittal
, and
F. M.
Najjar
, “
Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils
,”
J. Fluid Mech.
566
,
309
343
(
2006
).
33.
J. H. J.
Buchholz
and
A. J.
Smits
, “
The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel
,”
J. Fluid Mech.
603
,
331
365
(
2008
).
34.
M. A.
Green
and
A. J.
Smits
, “
Effects of three-dimensionality on thrust production by a pitching panel
,”
J. Fluid Mech.
615
,
211
220
(
2008
).
35.
T.
Van Buren
,
D.
Floryan
,
N.
Wei
, and
A. J.
Smits
, “
Flow speed has little impact on propulsive characteristics of oscillating foils
,”
Phys. Rev. Fluids
3
,
013103
(
2018
).
36.
M. J.
Lighthill
, “
Hydromechanics of aquatic animal propulsion
,”
Annu. Rev. Fluid Mech.
1
(
1
),
413
446
(
1969
).
37.
D.
Floryan
,
T.
Van Buren
,
C. W.
Rowley
, and
A. J.
Smits
, “
Scaling the propulsive performance of heaving and pitching foils
,”
J. Fluid Mech.
822
,
386
397
(
2017
).
38.
M. S.
Triantafyllou
and
G. S.
Triantafyllou
, “
An efficient swimming machine
,”
Sci. Am.
272
(
3
),
64
70
(
1995
).
39.
H.
Hu
, “
Biologically inspired design of autonomous robotic fish at essex
,” in
Proceedings of the IEEE SMC UK-RI Chapter Conference
(
IEEE
,
2006
), pp.
1
8
.
40.
P. P. A.
Valdivia y Alvarado
, “
Design of biomimetic compliant devices for locomotion in liquid environments
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
2007
.
41.
F.
Boyer
,
D.
Chablat
,
P.
Lemoine
, and
P.
Wenger
, “
The eel-like robot
,” in
Proceedings of ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference, San Diego, CA
(
ASME
,
2009
), pp.
655
662
, DETC2009-86328.
42.
C.
Stefanini
,
S.
Orofino
,
L.
Manfredi
,
S.
Mintchev
,
S.
Marrazza
,
T.
Assaf
,
L.
Capantini
,
E.
Sinibaldi
,
S.
Grillner
,
P.
Wallen
 et al, “
A compliant bioinspired swimming robot with neuro-inspired control and autonomous behavior
,” in
2012 IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2012
), pp.
5094
5098
.
43.
H.
El Daou
,
T.
Salumäe
,
G.
Toming
, and
M.
Kruusmaa
, “
A bio-inspired compliant robotic fish: Design and experiments
,” in
2012 IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2012
), pp.
5340
5345
.
44.
Y.
Cha
,
J.
Laut
,
P.
Phamduy
, and
M.
Porfiri
, “
Swimming robots have scaling laws, too
,”
IEEE/ASME Trans. Mechatronics
21
(
1
),
598
600
(
2016
).
45.
M.
Piñeirua
,
B.
Thiria
, and
R.
Godoy-Diana
, “
Modelling of an actuated elastic swimmer
,”
J. Fluid Mech.
829
,
731
750
(
2017
).
46.
A.
Crespi
,
K.
Karakasiliotis
,
A.
Guignard
, and
A. J.
Ijspeert
, “
Salamandra robotica II: An amphibious robot to study salamander-like swimming and walking gaits
,”
IEEE Trans. Rob.
29
(
2
),
308
320
(
2013
).
47.
T.
Leclercq
and
E.
de Langre
, “
Reconfiguration of elastic blades in oscillatory flow
,”
J. Fluid Mech.
838
,
606
630
(
2018
).
48.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
2000
).
49.
F. D.
Bianchi
,
H.
de Battista
, and
R. J.
Mantz
,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
(
Springer-Verlag
,
London
,
2007
).

Supplementary Material

You do not currently have access to this content.