Hydroelastic interactions between regular water waves and floating freshwater ice are investigated using laboratory experiments for a range of incident wave periods and steepnesses. It is shown that only incident waves with sufficiently long period and large steepness break up the ice cover and that the extent of breakup increases with increasing period and steepness. Furthermore, it is shown that an increasing proportion of the incident wave propagates through the ice-covered water as the period and steepness increase, indicating the existence of a positive feedback loop between the ice breakup and increased wave propagation.

1.
R.
Rabbitt
and
E.
Damiano
, “
A hydroelastic model of macromechanics in the endolymphatic vestibular canal
,”
J. Fluid Mech.
238
,
337
369
(
1992
).
2.
R.
Repetto
,
I.
Ghigo
,
G.
Seminara
, and
C.
Ciurlo
, “
A simple hydro-elastic model of the dynamics of a vitreous membrane
,”
J. Fluid Mech.
503
,
1
14
(
2004
).
3.
X.-J.
Chen
,
Y.-S.
Wu
,
W.-C.
Cui
, and
J. J.
Jensen
, “
Review of hydroelasticity theories for global response of marine structures
,”
Ocean Eng.
33
,
439
457
(
2006
).
4.
M.
Lamas-Pardo
,
G.
Iglesias
, and
L.
Carral
, “
A review of very large floating structures (VLFS) for coastal and offshore uses
,”
Ocean Eng.
109
,
677
690
(
2015
).
5.
A.
Shams
,
S.
Zhao
, and
M.
Porfiri
, “
Hydroelastic slamming of flexible wedges: Modeling and experiments from water entry to exit
,”
Phys. Fluids
29
,
037107
(
2017
).
6.
E. J.
Chae
,
D. T.
Akcabay
,
A.
Lelong
,
J. A.
Astolfi
, and
Y. L.
Young
, “
Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils
,”
Phys. Fluids
28
,
075102
(
2016
).
7.
M.
Amaouche
and
G.
Di Labbio
, “
Linear and weakly nonlinear global instability of a fluid flow through a collapsible channel
,”
Phys. Fluids
28
,
044106
(
2016
).
8.
T. D.
Williams
,
L. G.
Bennetts
,
V. A.
Squire
,
D.
Dumont
, and
L.
Bertino
, “
Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations
,”
Ocean Modell.
71
,
81
91
(
2013
).
9.
T. D.
Williams
,
L. G.
Bennetts
,
V. A.
Squire
,
D.
Dumont
, and
L.
Bertino
, “
Wave–ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface
,”
Ocean Modell.
71
,
92
101
(
2013
).
10.
V. A.
Squire
,
J. P.
Dugan
,
P.
Wadhams
,
P. J.
Rottier
, and
A. K.
Liu
, “
Of ocean waves and sea ice
,”
Annu. Rev. Fluid Mech.
27
,
115
168
(
1995
).
11.
M. G.
Asplin
,
R.
Galley
,
D. G.
Barber
, and
S.
Prinsenberg
, “
Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms
,”
J. Geophys. Res.: Oceans
117
,
C06025
, https://doi.org/10.1029/2011jc007221 (
2012
).
12.
A.
Kohout
,
M.
Williams
,
T.
Toyota
,
J.
Lieser
, and
J.
Hutchings
, “
In situ observations of wave-induced sea ice breakup
,”
Deep Sea Res., Part II
131
,
22
27
(
2016
).
13.
M. H.
Meylan
,
L. G.
Bennetts
, and
A. L.
Kohout
, “
In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone
,”
Geophys. Res. Lett.
41
,
5046
5051
, https://doi.org/10.1002/2014gl060809 (
2014
).
14.
L.
Bennetts
,
M.
Peter
,
V.
Squire
, and
M.
Meylan
, “
A three-dimensional model of wave attenuation in the marginal ice zone
,”
J. Geophys. Res.
115
,
C12043
, https://doi.org/10.1029/2009jc005982 (
2010
).
15.
C. O.
Collins
,
W. E.
Rogers
,
A.
Marchenko
, and
A. V.
Babanin
, “
In situ measurements of an energetic wave event in the Arctic marginal ice zone
,”
Geophys. Res. Lett.
42
,
1863
1870
, https://doi.org/10.1002/2015gl063063 (
2015
).
16.
L. G.
Bennetts
and
V. A.
Squire
, “
On the calculation of an attenuation coefficient for transects of ice-covered ocean
,”
Proc. R. Soc. A
468
,
136
162
(
2012
).
17.
L.
Bennetts
and
V.
Squire
, “
Model sensitivity analysis of scattering-induced attenuation of ice-coupled waves
,”
Ocean Modell.
45
,
1
13
(
2012
).
18.
A.
Herman
,
K.-U.
Evers
, and
N.
Reimer
, “
Floe-size distributions in laboratory ice broken by waves
,”
Cryosphere
12
,
685
699
(
2018
).
19.
D. J.
McGovern
and
W.
Bai
, “
Experimental study on kinematics of sea ice floes in regular waves
,”
Cold Reg. Sci. Technol.
103
,
15
30
(
2014
).
20.
F.
Nelli
,
L.
Bennetts
,
D.
Skene
,
J.
Monty
,
J.
Lee
,
M.
Meylan
, and
A.
Toffoli
, “
Reflection and transmission of regular water waves by a thin, floating plate
,”
Wave Motion
70
,
209
221
(
2017
).
21.
D. K.
Sree
,
A. W.-K.
Law
, and
H. H.
Shen
, “
An experimental study on the interactions between surface waves and floating viscoelastic covers
,”
Wave Motion
70
,
195
208
(
2017
).
22.
D.
Skene
,
L.
Bennetts
,
M.
Meylan
, and
A.
Toffoli
, “
Modelling water wave overwash of a thin floating plate
,”
J. Fluid Mech.
777
,
R3
(
2015
).
23.
D.
Skene
,
L.
Bennetts
,
M.
Wright
,
M.
Meylan
, and
K.
Maki
, “
Water wave overwash of a step
,”
J. Fluid Mech.
839
,
293
312
(
2018
).
24.
G. W.
Timco
, “
The mechanical properties of saline-doped and carbide (urea)-doped model ice
,”
Cold Reg. Sci. Technol.
3
,
45
56
(
1980
).

Supplementary Material

You do not currently have access to this content.