In this work, we investigate the temporal evolution of the jet-driven scour depth in a pothole lying on a cohesionless granular bed by using diverse approaches. First, we present new experiments which encompass cases with jet angles ranging from 45° to 90° from the horizontal, several initial water depths, and different particle sizes, supplementing experiments developed recently by the last two authors. In particular, we address relatively large angles, mostly absent in previous analyses. Our results initially confirm the existence of two very different stages in the scour process, essentially overlooked in datasets used to obtain the traditional formulas—developing and developed phases; they then provide unprecedented evidence of the very distinct behavior at 90°, characterized by a step-wise behavior. Second, after revisiting the rationale of a theory for the equilibrium condition developed elsewhere by the first author and a collaborator, we employ the existing and new datasets to determine the multiplicative constants embedded in the equilibrium scour formulas. Third, we present a novel theory for the temporal evolution of the scour depth during the developed phase (but with good prediction capabilities in the developing phase as well). By invoking the conservation of mass of sediment in the pothole, in addition to the energy conservation within the pothole and the phenomenological theory of turbulence, we obtain ordinary differential equations which we solve by numerical means. We validate the theory using our new and other datasets. Finally, we provide interesting interpretations of the scour process by using the results of the theory.

1.
Aamir
,
M.
and
Ahmad
,
Z.
, “
Review of literature on local scour under plane turbulent wall jets
,”
Phys. Fluids
28
,
105102
(
2016
).
2.
Abt
,
S. R.
,
Kloberdanz
,
R. L.
, and
Mendoza
,
C.
, “
Unified culvert scour determination
,”
J. Hydraul. Eng.
110
,
1475
(
1984
).
3.
Aderibigbe
,
O. O.
and
Rajaratnam
,
N.
, “
Erosion of loose beds by submerged circular impinging vertical turbulent jets
,”
J. Hydraul. Res.
34
,
19
(
1996
).
4.
Ali
,
S. Z.
, and
Dey
,
S.
, “
Origin of the scaling laws of sediment transport
,”
Proc. R. Soc. A
473
(
2197
),
20160785
(
2017
).
5.
Ali
,
S. Z.
and
Dey
,
S.
, “
Impact of phenomenological theory of turbulence on pragmatic approach to fluvial hydraulics
,”
Phys. Fluids
30
,
045105
(
2018
).
6.
Bates
,
M.
,
Andreini
,
N.
, and
Ancey
,
C.
, “
Basal entrainment by Newtonian gravity-driven flows
,”
Phys. Fluids
28
,
053101
(
2016
).
7.
Blaisdell
,
F. W.
,
Anderson
,
C. L.
, and
Hebaus
,
G. G.
, “
Ultimate dimensions of local scour
,”
J. Hydraul. Div., ASCE
107
(
HY3
),
327
337
(
1981
).
8.
Bombardelli
,
F. A.
and
Gioia
,
G.
, “
Towards a theoretical model for scour phenomena
,” in
Proceedings of RCEM 2005, 4th IAHR Symposium on River, Coastal, and Estuarine Morphodynamics, Urbana, IL, USA
, edited by
Parker
,
G.
and
García
,
M.
(
CRC Press
,
2005
), Vol. 2, pp.
931
936
.
9.
Bombardelli
,
F. A.
and
Gioia
,
G.
, “
Scouring of granular beds by jet-driven axisymmetric turbulent cauldrons
,”
Phys. Fluids
18
,
088101
(
2006
).
10.
Bombardelli
,
F. A.
and
Jha
,
S. K.
, “
Discussion of ‘closure problem to jet scour’ by G. J. C. M. Hoffmans
,”
J. Hydraul. Res.
49
(
2
),
277
279
(
2011
).
11.
Bormann
,
N. E.
and
Julien
,
P. Y.
, “
Scour downstream of grade-control structures
,”
J. Hydraul. Eng.
117
(
5
),
579
594
(
1991
).
12.
Breusers
,
H. N. C.
and
Raudkivi
,
A. J.
,
Scouring: Hydraulic Structures Design Manual Series
(
Balkema
,
The Netherlands
,
1991
).
13.
Capra
,
F.
,
The Science of Leonardo: Inside the Mind of the Great Genius of the Renaissance
(
Anchor Books
,
New York
,
2008
).
14.
Chee
,
S. P.
and
Kung
,
T.
, “
Piletas de derrubio autoformadas
,” in
Proceedings of 6th IAHR Latin American Congress
,
Bogotá, Colombia
,
1974
.
15.
Chee
,
S. P.
and
Padiyar
,
P. V.
, “
Erosion at the base of flip buckets
,”
Eng. J. Inst. Can.
52
(
11
),
22
24
(
1969
).
16.
Dey
,
S.
and
Raikar
,
R. V.
, “
Scour below a high vertical drop
,”
J. Hydraul. Eng.
133
(
5
),
564
568
(
2007
).
17.
Dey
,
S.
and
Sarkar
,
A.
, “
Scour downstream of an apron due to submerged horizontal jets
,”
J. Hydraul. Eng.
132
(
3
),
246
257
(
2006
).
18.
Foster
,
G. R.
,
Meyer
,
L. D.
, and
Onstad
,
C. A.
, “
An erosion equation derived from basic erosion principles
,”
Trans. ASAE
20
(
4
),
0678
0
682
(
1977
).
19.
Franke
,
P. G.
, “
Uber kolkbildung und kolkformen
,”
Osterreichische Wasserwirstschaft
12
(
1
),
11
16
(
1960
).
20.
Frisch
,
U.
,
Turbulence
(
Cambridge University Press
,
Cambridge
,
1995
).
21.
García
,
M. H.
,
Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. Manual 110
(
American Society of Civil Engineers
,
Reston, VA, USA
,
2008
).
22.
Gioia
,
G.
and
Bombardelli
,
F. A.
, “
Scaling and similarity in rough channel flows
,”
Phys. Rev. Lett.
88
,
014501
(
2002
).
23.
Gioia
,
G.
and
Bombardelli
,
F. A.
, “
Localized turbulent flows on scouring granular beds
,”
Phys. Rev. Lett.
95
,
014501
(
2005
).
24.
Gioia
,
G.
and
Chakraborty
,
P.
, “
Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory
,”
Phys. Rev. Lett.
96
,
044502
(
2006
).
25.
Gioia
,
G.
,
Guttenberg
,
N.
,
Goldenfeld
,
N.
, and
Chakraborty
,
P.
, “
Spectral theory of the turbulent mean-velocity profile
,”
Phys. Rev. Lett.
105
,
184501
(
2010
).
26.
Graf
,
W. H.
and
Altinakar
,
M.
,
Fluvial Hydraulics
(
John Wiley and Sons
,
Chichester, UK
,
1998
).
27.
Guo
,
J.
, “
Semi-analytical model for temporal clearwater scour at prototype piers
,”
J. Hydraul. Res.
52
(
3
),
366
374
(
2014
).
28.
Hartung
,
F.
, “
Ursache und verhutung der stauraumverlandung bei talsperren
,”
Wasserwirtschaft
1
,
3
13
(
1959
).
29.
Hoffmans
,
G. J. C. M.
and
Verheij
,
H. J.
,
Scour Manual
(
Balkema
,
The Netherlands
,
1997
).
30.
Hoffmans
,
G. J. C. M.
, “
Jet scour in equilibrium phase
,”
J. Hydraul. Eng.
124
(
4
),
430
437
(
1998
).
31.
Hoffmans
,
G. J. C. M.
, “
Closure problem to jet scour
,”
J. Hydraul. Res.
47
(
1
),
100
109
(
2009
).
32.
Hunter
,
T. N.
,
Peakall
,
J.
,
Unsworth
,
T. J.
,
Acun
,
M. H.
,
Keevil
,
G.
,
Rice
,
H.
, and
Biggs
,
S.
, “
The influence of system scale on impinging jet sediment erosion: Observed using novel and standard measurement techniques
,”
Chem. Eng. Res. Des.
91
,
722
734
(
2013
).
33.
INCYTH-LHA
, “
Estudio sobre modelo del aliviadero de la presa casa de piedra informe final
,” Report LHA-INA,
Ezeiza, Argentina
,
1982
(in Spanish).
34.
Ivanisevich Machado
,
L.
, “
Formulas to calculate the scour limit on granular or rock beds
,” in
Proceedings XIII National Workshop on Large Dams
(
Rio de Janeiro
,
1980
), pp.
35
52
.
35.
Julien
,
P. Y.
,
Erosion and Sedimentation
, 2nd ed. (
Cambridge University Press
,
2010
).
36.
Kotoulas
,
D.
, “
Das Kolkproblem unter besonderer berucksichtigung der faktoren zeit und geschiebemischung in rahmen der wildbachverbauung
,” Dissertation, Prom. 3983 (
Technischen Hochschule Zurich
,
1967
).
37.
Laursen
,
E. M.
, “
Observations on the nature of scour
,” in
Proceedings of 5th Hydraulic Conference
(
University of Iowa
,
Iowa City, Iowa, Iowa Bul.
,
1952
), Vol. 34, pp.
179
197
.
38.
Lee
,
C.-H.
,
Low
,
Y. M.
, and
Chiew
,
Y. M.
, “
Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour
,”
Phys. Fluids
28
,
053305
(
2016
).
39.
Lohse
,
D.
, “
Crossover from high to low Reynolds number turbulence
,”
Phys. Rev. Lett.
73
,
3223
3226
(
1994
).
40.
Manes
,
C.
and
Brocchini
,
M.
, “
Local scour around structures and the phenomenology of turbulence
,”
J. Fluid Mech.
779
,
309
324
(
2015
).
41.
Mason
,
P. J.
and
Arumugam
,
K.
, “
Free jet scour below dams and flip buckets
,”
J. Hydraul. Eng.
111
,
220
(
1985
).
42.
Mih
,
W.
, “
Equations for axisymmetric and two-dimensional turbulent jets
,”
J. Hydraul. Eng.
115
(
12
),
1715
1719
(
1989
).
43.
Muller
,
R.
and
Eggenberger
,
W.
, “
Experimentelle und theoretische untersuchungen uber das Kolkproblem
,” Mitt. Versuchanstalt Wasserbau, No. 5, ETH, Zurich,
1944
(in German).
44.
Pagliara
,
S.
,
Amidei
,
M.
, and
Hager
,
W. H.
, “
Hydraulics of 3D plunge pool scour
,”
J. Hydraul. Eng.
134
(
9
),
1275
1284
(
2008a
).
45.
Pagliara
,
S.
,
Hager
,
W. H.
, and
Minor
,
H. E.
, “
Hydraulics of plane plunge pool scour
,”
J. Hydraul. Eng.
132
(
5
),
450
461
(
2006
).
46.
Pagliara
,
S.
,
Hager
,
W. H.
, and
Unger
,
J.
, “
Temporal evolution of plunge pool scour
,”
J. Hydraul. Eng.
134
(
11
),
1630
(
2008b
).
47.
Pagliara
,
S.
and
Palermo
,
M.
, “
Scour control and surface sediment distribution downstream of block ramps
,”
J. Hydraul. Res.
46
(
3
),
334
343
(
2008
).
48.
Parker
,
G.
, “
1D sediment transport morphodynamics with applications to rivers and turbidity currents
,” e-book downloadable at: http://cee.uiuc.edu/people/parkerg/morphodynamics_ebook.htm,
2004
.
49.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
New York
,
2000
).
50.
Raudkivi
,
A. J.
,
Loose Boundary Hydraulics
(
Balkema
,
Rotterdam
,
1998
).
51.
Rouse
,
H.
, “
Criteria for similarity in the transportation of sediment
,” in
Proceedings of 1st Hydraulic Conference
(
State University of Iowa
,
Iowa City, Iowa
,
1940
), pp.
33
49
.
52.
Saddoughi
,
S. G.
and
Veeravalli
,
S. V.
, “
Local isotropy turbulent boundary layers at high Reynolds number
,”
J. Fluid Mech.
268
,
333
372
(
1994
).
53.
Schoklitsch
,
A.
, “
Kolkbildung unter uberfallstrahlen
,”
Wasserwirtschaft
25
(
24
),
341
343
(
1932
) (in German).
54.
Shields
,
A. F.
,
Anwendung der Ahnlichkeitsmechanik und der Turbulentzforschung auf die Geshiebebewegung
(
Mitt. Preuss. Versuchsanst. Wasserbau Schiffbau
,
1936
), Vol. 26, p.
26
[English translation by
Ott
,
W. P.
and
van Uchelen
,
J. C.
, Rep. 167,
California Institute of Technology
,
Pasadena
,
1936
, p.
36
(in German)].
55.
Stein
,
O. R.
,
Julien
,
P. Y.
, and
Alonso
,
C. V.
, “
Mechanics of jet scour downstream of a headcut
,”
J. Hydraul. Res.
31
(
6
),
723
738
(
1993
).
56.
USGS
, See http://pubs.usgs.gov/of/2004/1216/text.html#c for Glossary of Glacier Terminology—Text version,
2004
.
57.
Veronese
,
A.
,
Erosion of a Bed Downstream from an Outlet
(
Colorado A & M College
,
Fort Collins, United States
,
1937
).
58.
Wilson
,
L.
,
Ghatan
,
G. J.
,
Head
,
J. W.
, and
Mitchell
,
K. L.
, “
Mars outflow channels: A reappraisal of the estimation of water flow velocities from water depths, regional slopes, and channel floor properties
,”
J. Geophys. Res.
109
,
E09003
, https://doi.org/10.1029/2004je002281 (
2004
).
59.
Yalin
,
M. S.
,
The Mechanics of Sediment Transport
(
Pergamon Press
,
Oxford
,
1977
).
You do not currently have access to this content.