This study aims to elucidate the complex interaction between a suspended particle and an attached bubble, which is associated with cavitation in silt-laden flow. Systematic experiments are performed with high-speed photography, in which bubbles are generated by underwater electric discharge means. The bubble-particle interactions are found to be strongly dependent on two dimensionless parameters, i.e., the particle-bubble size ratio λL and the particle-liquid density ratio λρ. When λρ equals 2.61, the bubble split phenomenon is universally observed and the particle shooting effect (the particle acceleration during bubble expansion and after bubble-particle detachment) becomes more obvious as λL decreases. If λL < ∼0.34, the particle velocity keeps positive (away from the bubble), otherwise the particle velocity drops below zero (toward the bubble) during the bubble collapse phase. As λρ increases, the particle achieves a lower velocity but a higher impulse, and the bubble necking phenomenon is more pronounced. Our boundary integral simulations reproduce the experiments extremely well, including the particle dynamics, the bubble wrapping the particle, the bubble necking and detachment, and the mushroom-shaped bubble. After the bubble-particle detachment, the liquid around the detachment location is drawn inward and collides on the axis of symmetry, leading to the formation of a localized high pressure region between the bubble and the particle, which accelerates the particle for the second time even in the bubble collapse phase.

1.
Lord
Rayleigh
, “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
94
(
1917
).
2.
A.
Prosperetti
, “
The speed of sound in a gas–vapour bubbly liquid
,”
Interface Focus
5
,
20150024
(
2015
).
3.
J.
Best
, “
The formation of toroidal bubbles upon the collapse of transient cavities
,”
J. Fluid Mech.
251
,
79
(
1993
).
4.
W.
Lauterborn
and
H.
Bolle
, “
Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
,”
J. Fluid Mech.
72
,
391
(
1975
).
5.
G.
Chahine
, “
Experimental and asymptotic study of nonspherical bubble collapse
,”
Appl. Sci. Res.
38
,
187
(
1982
).
6.
Y.
Tomita
and
A.
Shima
, “
Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
,”
J. Fluid Mech.
169
,
535
(
1986
).
7.
T.
Li
,
S.
Wang
,
S.
Li
, and
A. M.
Zhang
, “
Numerical investigation of an underwater explosion bubble based on FVM and VOF
,”
Appl. Ocean Res.
74
,
49
(
2018
).
8.
O.
Supponen
,
D.
Obreschkow
,
P.
Kobel
,
M.
Tinguely
,
N.
Dorsaz
, and
M.
Farhat
, “
Shock waves from nonspherical cavitation bubbles
,”
Phys. Rev. Fluids
2
,
093601
(
2017
).
9.
A.
Philipp
and
W.
Lauterborn
, “
Cavitation erosion by single laser-produced bubbles
,”
J. Fluid Mech.
361
,
75
(
1998
).
10.
E. A.
Brujan
,
G. S.
Keen
,
A.
Vogel
, and
J. R.
Blake
, “
The final stage of the collapse of a cavitation bubble close to a rigid boundary
,”
Phys. Fluids
14
,
85
(
2002
).
11.
C. F.
Naudé
and
A. T.
Ellis
, “
On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary
,”
J. Basic Eng.
83
,
648
(
1961
).
12.
M. S.
Plesset
and
R. B.
Chapman
, “
Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary
,”
J. Fluid Mech.
47
,
283
(
1971
).
13.
B.
Han
,
R.
Zhu
,
Z.
Guo
,
L.
Liu
, and
X.-W.
Ni
, “
Control of the liquid jet formation through the symmetric and asymmetric collapse of a single bubble generated between two parallel solid plates
,”
Eur. J. Mech. B: Fluids
72
,
114
(
2018
).
14.
S. W.
Gong
,
S. W.
Ohl
,
E.
Klaseboer
, and
B. C.
Khoo
, “
Interaction of a spark-generated bubble with a two-layered composite beam
,”
J. Fluids Struct.
76
,
336
(
2018
).
15.
J. R.
Blake
,
B. B.
Taib
, and
G.
Doherty
, “
Transient cavities near boundaries. Part 1. Rigid boundary
,”
J. Fluid Mech.
170
,
479
(
1986
).
16.
R. P.
Tong
,
W. P.
Schiffers
,
S. J.
Shaw
,
J. R.
Blake
, and
D. C.
Emmony
, “
The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary
,”
J. Fluid Mech.
380
,
339
(
1999
).
17.
O.
Lindau
and
W.
Lauterborn
, “
Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
,”
J. Fluid Mech.
479
,
327
(
2003
).
18.
S.
Li
,
R.
Han
,
A. M.
Zhang
, and
Q. X.
Wang
, “
Analysis of pressure field generated by a collapsing bubble
,”
Ocean Eng.
117
,
22
(
2016
).
19.
J.
Madadnia
and
I.
Owen
, “
Accelerated surface erosion by cavitating particulate-laden flows
,”
Wear
165
,
113
(
1993
).
20.
J.
Madadnia
and
I.
Owen
, “
Erosion in conical diffusers in particulate-laden cavitating flow
,”
Int. J. Multiphase Flow
21
,
1253
(
1995
).
21.
Y.
Zhang
,
Y.
Zhang
,
Z.
Qian
,
B.
Ji
, and
Y.
Wu
, “
A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow
,”
Renewable Sustainable Energy Rev.
56
,
303
(
2016
).
22.
Y.
Zhang
,
F.
Chen
,
Y.
Zhang
,
Y.
Zhang
, and
X.
Du
, “
Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle
,”
Exp. Therm. Fluid Sci.
98
,
645
(
2018
).
23.
S.
Wu
,
Z.
Zuo
,
H. A.
Stone
, and
S.
Liu
, “
Motion of a free-settling spherical particle driven by a laser-induced bubble
,”
Phys. Rev. Lett.
119
,
084501
(
2017
).
24.
W. K.
Soh
and
B.
Willis
, “
A flow visualization study on the movements of solid particles propelled by a collapsing cavitation bubble
,”
Exp. Therm. Fluid Sci.
27
,
537
(
2003
).
25.
M.
Arora
,
C. D.
Ohl
, and
K. A.
Mørch
, “
Cavitation inception on microparticles: A self-propelled particle accelerator
,”
Phys. Rev. Lett.
92
,
174501
(
2004
).
26.
B. M.
Borkent
,
M.
Arora
,
C. D.
Ohl
,
N.
De Jong
,
M.
Versluis
,
D.
Lohse
,
K. A.
Mørch
,
E.
Klaseboer
, and
B. C.
Khoo
, “
The acceleration of solid particles subjected to cavitation nucleation
,”
J. Fluid Mech.
610
,
157
(
2008
).
27.
D.
Pavard
,
E.
Klaseboer
,
S.-W.
Ohl
, and
B. C.
Khoo
, “
Removal of particles from holes in submerged plates with oscillating bubbles
,”
Phys. Fluids
21
,
083304
(
2009
).
28.
P.
Harris
, “
A numerical method for predicting the motion of a bubble close to a moving rigid structure
,”
Commun. Numer. Methods Eng.
9
,
81
(
1993
).
29.
J.
Duncan
and
S.
Zhang
, “
On the interaction of a collapsing cavity and a compliant wall
,”
J. Fluid Mech.
226
,
401
(
1991
).
30.
G. L.
Chahine
,
K. M.
Kalumuck
, and
C. T.
Hsiao
, “
Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DYNAFS, a three-dimensional BEM code
,”
Comput. Mech.
32
,
319
(
2003
).
31.
E.
Klaseboer
,
K. C.
Hung
,
C.
Wang
,
C. W.
Wang
,
B. C.
Khoo
,
P.
Boyce
,
S.
Debono
, and
H.
Charlier
, “
Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure
,”
J. Fluid Mech.
537
,
387
(
2005
).
32.
S.
Li
,
R.
Han
, and
A. M.
Zhang
, “
Nonlinear interaction between a gas bubble and a suspended sphere
,”
J. Fluids Struct.
65
,
333
(
2016
).
33.
S.
Li
,
A. M.
Zhang
,
R.
Han
, and
Y. Q.
Liu
, “
Experimental and numerical study on bubble-sphere interaction near a rigid wall
,”
Phys. Fluids
29
,
092102
(
2017
).
34.
G.
Chahine
, “
Interaction between an oscillating bubble and a free surface
,”
J. Fluids Eng.
99
,
709
(
1977
).
35.
S.
Buogo
and
G. B.
Cannelli
, “
Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model
,”
J. Acoust. Soc. Am.
111
,
2594
(
2002
).
36.
C. K.
Turangan
,
G. P.
Ong
,
E.
Klaseboer
, and
B. C.
Khoo
, “
Experimental and numerical study of transient bubble-elastic membrane interaction
,”
J. Appl. Phys.
100
,
054910
(
2006
).
37.
D.
Obreschkow
,
P.
Kobel
,
N.
Dorsaz
,
A.
De Bosset
,
C.
Nicollier
, and
M.
Farhat
, “
Cavitation bubble dynamics inside liquid drops in microgravity
,”
Phys. Rev. Lett.
97
,
094502
(
2006
).
38.
A. M.
Zhang
,
P.
Cui
,
J.
Cui
, and
Q. X.
Wang
, “
Experimental study on bubble dynamics subject to buoyancy
,”
J. Fluid Mech.
776
,
137
(
2015
).
39.
S.
Zhang
,
S. P.
Wang
, and
A. M.
Zhang
, “
Experimental study on the interaction between bubble and free surface using a high-voltage spark generator
,”
Phys. Fluids
28
,
032109
(
2016
).
40.
A.
Dadvand
,
B. C.
Khoo
, and
M. T.
Shervani-Tabar
, “
A collapsing bubble-induced microinjector: An experimental study
,”
Exp. Fluids
46
,
419
(
2009
).
41.
N. N.
Liu
,
F. R.
Ming
,
L. T.
Liu
, and
S. F.
Ren
, “
The dynamic behaviors of a bubble in a confined domain
,”
Ocean Eng.
144
,
175
(
2017
).
42.
Q. X.
Wang
,
K. S.
Yeo
,
B. C.
Khoo
, and
K. Y.
Lam
, “
Strong interaction between a buoyancy bubble and a free surface
,”
Theor. Comput. Fluid Dyn.
8
,
73
(
1996
).
43.
J. H.
Duncan
,
C. D.
Milligan
, and
S.
Zhang
, “
On the interaction between a bubble and a submerged compliant structure
,”
J. Sound Vib.
197
,
17
(
1996
).
44.
G. X.
Wu
and
R.
Eatock Taylor
, “
Transient motion of a floating body in steep water waves
,” in Proceedings of the 11th Workshop on Water Waves and Floating Bodies,
1996
.
45.
G. X.
Wu
, “
Hydrodynamic force on a rigid body during impact with liquid
,”
J. Fluids Struct.
12
,
549
(
1998
).
46.
J. R.
Blake
,
Y.
Tomita
, and
R. P.
Tong
, “
The art, craft and science of modelling jet impact in a collapsing cavitation bubble
,” in
Fascination of Fluid Dynamics
(
Springer
,
1998
), pp.
77
90
.
47.
Q. X.
Wang
, “
Local energy of a bubble system and its loss due to acoustic radiation
,”
J. Fluid Mech.
797
,
201
(
2016
).
48.
M.
Lee
,
E.
Klaseboer
, and
B. C.
Khoo
, “
On the boundary integral method for the rebounding bubble
,”
J. Fluid Mech.
570
,
407
(
2007
).
You do not currently have access to this content.